Encyclopedia of Sustainability Science and Technology

2012 Edition
| Editors: Robert A. Meyers

Greenhouse Gas Emission Reduction by Waste-to-Energy

Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-0851-3_403

Definition of the Subject

Waste management in general plays an important role in the GHG reduction targets of every country. Usually, the generated municipal solid wastes (MSW) are landfilled and in many cases these landfills are not controlled and their emissions are not collected. Collection and treatment of the emissions of regulated landfills can reduce their GHG effect by up to 75%. The reduction of wastes going to landfill and the replacement by a mechanical, biological, and/or thermal treatment lowers the released GHG emissions significantly.

By means of these processes, the contribution of waste management to the GHG emissions of a nation can be reduced from 3.3% to 1.2% (e.g., in Germany [1]). In addition, the use of waste incineration in a modern waste management system produces electrical power and heat from the wastes. This results in a further decrease of GHG emissions.

Introduction: Importance of Waste Incineration

The principal method of disposing MSW worldwide is...

This is a preview of subscription content, log in to check access.


Primary Literature

  1. 1.
    National Inventory Report for the German Greenhouse Gas Inventory 1990–2007, Submission under the United Nations Framework Convention on Climate Change and the Kyoto Protocol 2008, Federal Environment Office, Dessau-Roßlau, April 2008, p 47Google Scholar
  2. 2.
    Metz B et al (eds) (2005) Special report on safeguarding the ozone layer and the global climate system: issues related to hydrofluorocarbons and perfluorocarbons. Cambridge University Press, Cambridge/New YorkGoogle Scholar
  3. 3.
    Emission control: Energy conversion in thermal solid waste treatment. VDI 3460 Part 2, 2007, issue German/English, ICS 13.030.40, 27.190, p 13Google Scholar
  4. 4.
    Guendehou G, Koch M, Hockstad L, Pipatti R, Yamada M (1997) Incineration and open burning of waste. In: IPCC guidelines for national greenhouse gas inventories, vol 5, chap 5, p 5.5Google Scholar
  5. 5.
    Obermoser M, Fellner J, Rechenberger H (2009) Determination of reliable CO2 emission factors for Waste-to-energy plants. Waste Manage Res 27(9):407–413, Applied greenhouse gas accounting: methodologies and casesGoogle Scholar
  6. 6.
    Riber C, Pedersen C, Christensen TH (2009) Chemical composition of material fractions in Danish household waste. Waste Manage 29:1251–1257CrossRefGoogle Scholar
  7. 7.
    Gentil E, Clavreul J, Christensen TH (2009) Global warming factor of MSW management in Europe. Waste Manage Res 27(9):850–860, Applied greenhouse gas accounting: methodologies and casesCrossRefGoogle Scholar
  8. 8.
    Manfredi S, Scharff HM, Tonini D, Christensen TH (2009) Landfilling of waste: accounting of GHGs and GW contributions. Waste Manage Res 27(8):825–836, Fundamental in greenhouse gas accounting: concepts and mechanismsCrossRefGoogle Scholar
  9. 9.
    Astrup T, Moeller J, Fruergaard T (2009) Incineration and co-combustion of waste: accounting GHG and global warming contribution. Waste Manage Res 27(8):789–799, Applied greenhouse gas accounting: methodologies and casesCrossRefGoogle Scholar
  10. 10.
    Bilitewski B, Wünsch C, Jager J, Hoffmann M (2010) Energieeffizienzsteigerung und CO2-Vermeidungspotenziale bei der Müllverbrennung – technische und wirtschaftliche Bewertung. EdDE-Dokumentation 13, Entsorgergemeinschaft der deutschen Entsorgungswirtschaft e.V., April 2010, p 16Google Scholar
  11. 11.
    Roland C, Scheibengraf M (2003) Biologisch abbaubarer Kohlenstoff im Restmüll. Umweltbundesamt, Berichte BE-236. Wien, 2003Google Scholar
  12. 12.
    Pipatti R, Sharma C, Yamada M, Alves J, Gao Q, Guendehou G, Koch M, López Cabrera C, Mareckova K, Oonk H, Scheehle E, Smith A, Svardal P, Vieira S (2006) Waste generation, composition and management data. Solid waste disposal. In: IPCC guidelines for national greenhouse gas inventories, vol 5, chaps 2 and 3Google Scholar
  13. 13.
    Dehoust G, Schüler D, Vogt R, Giegrich J (2010) Klimaschutzpotenziale der Abfallwirtschaft. IFEU und Ökoinstitut e.V, Darmstadt/Heidelberg/BerlinGoogle Scholar
  14. 14.
    Hiraishi T, Nyenzi B, Miguez J, Alves J, Boeckx P, Brown K, Hoppaus R, Jubb C, Kerr T, Kleffelgaard T, Lucon O, Mauschitz G, Midaglia C, Milton M, Mondshine M, Oonk H, Paradiz B,Steczko K, Teixeira G, Towprayoon S, Yesserkepova I (2001) Waste. In: IPCC good practice guidance and uncertainty management in national greenhouse gas inventories, chap 5, p 5.29Google Scholar
  15. 15.
    Scheutz P, Kjeldsen P, Gentil E (2009) Greenhouse gases, radiative forcing, global warming potential and waste management – an introduction. Waste Manage Res 27(8):716–723, Fundamental in greenhouse gas accounting: concepts and mechanismsCrossRefGoogle Scholar
  16. 16.
    Bilitewski B, Schirmer M, Niestroj J, Wagner J (2005) Ökologische Effekte der Müllverbrennung durch Energienutzung, EdDE-Dokumentation 10, Entsorgergemeinschaft der deutschen Entsorgungswirtschaft e.V. Pirna, 2005, p 24Google Scholar
  17. 17.
    Houghton JT et al (eds) (1996) Intergovernmental Panel on Climate Change: climate change 1995: the science of climate change. Contribution of working group I to the second assessment report of the intergovernmental panel on climate change, Cambridge University Press, CambridgeGoogle Scholar
  18. 18.
    Global Emission Model for Integrated Systems (2009) Version 4.6, Öko-Institut e.VGoogle Scholar
  19. 19.
    Treder M (2008) Energieerzeugung und Klimarelevanz der W-t-E Anlagen in Deutschland (Kurzfassung vom 16.07.2008), WürzburgGoogle Scholar
  20. 20.
    Reimann DO (2009) CEWEP Energy Report II (status 2004-2007). CEWEP, BambergGoogle Scholar
  21. 21.
    Fruergaard T, Ekvall T, Astrup T (2009) Energy use and recovery in waste management and implications for accounting of greenhouse gases and global warming contributions. Waste Manage Res 27(8):724–737, Fundamental in greenhouse gas accounting: concepts and mechanismsCrossRefGoogle Scholar
  22. 22.
    Staiß F, Linkohr C, Zimmer U, Musiol F, Ottmüller M (2008) Erneuerbare energien in zahlen, nationale und internationale entwicklungen. Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (BMU), Berlin, Juni 2008Google Scholar
  23. 23.
    BREF/BAT Waste Incineration for Integrated Pollution Prevention and Control (IPPC) (2005) “Draft Reference Document on the Best Available techniques for Waste Incineration” European Commission, EIPPC Bureau Sevilla, Final Draft, May 2005Google Scholar
  24. 24.
    Dones R, Heck T, Hirschberg S (2004) Greenhouse Gas emissions from energy systems, comparison and overview. In: Cleveland C (ed) Encyclopedia of energy, vol 3. Academic/Elsevier, San Diego, pp 77–95CrossRefGoogle Scholar
  25. 25.
    Umweltbundesamt – German Federal Office for Environment, press information 34/2008, Dessau-Rosslau, 16.05.2008, GermanyGoogle Scholar
  26. 26.
    Kressig J, Stoffregen A (2008) Life cycle assessment of waste-to-energy plants in Europe – modeling of thermal treatment of municipal and similar waste to calculate eco-profiles for the European reference life cycle data system (ELCD), Performed for CEWEP by PE International, Leihnfelden-Echterdingen, Germany, 2008Google Scholar
  27. 27.
    Skovgaard M, Hedal N, Valanueva A, Andersen FM, Larsen H (2008) Municipal solid waste management and greenhouse gases, ETC/RWM working paper 2008/1, European Topic Center (ETC) on Resource and Waste Management (RWM), Copenhagen, 2008Google Scholar
  28. 28.
    ATSDR (2001) Landfill gas basic, agency for toxic substances & disease registry. In: Landfill gas primer – an overview for environmental health professionals. Atlanta, chap 2, November 2001Google Scholar
  29. 29.
    Tabasaran O, Rettenberger G (1987) Grundlagen zur Planung von Entgasungsanlagen, Handbuch Müll und Abfall, Kennz. 4547, Lieferung 1/87, E. Schmidt VerlagGoogle Scholar
  30. 30.
    Abfallbilanz, Umwelt, Statistisches Bundesamt, Wiesbaden, erschienen im Juli 2010Google Scholar
  31. 31.
    National Inventory Report for the German Greenhouse Gas Inventory 1990–2008, Submission under the United Nations Framework Convention on Climate Change and the Kyoto Protocol 2010, Federal Environment Office, Dessau-Roßlau, April 2010Google Scholar
  32. 32.
    Fritsche U, Rausch L (2008) Bestimmung spezifischer Treibhausgas-Emissionsfaktoren für Fernwärme, Bereich Energie & Klimaschutz. Öko-Institut, Büro Darmstadt, Im Auftrag des Umweltbundesamtes, Dessau-Roßlau, MaiGoogle Scholar
  33. 33.
    Bundesministerium für Wirtschaft und Technologie (Federal Ministry for Economics and Technology) (2006) Energieversorgung für Deutschland, Statusbericht für den Energiegipfel am 3 April 2006. Berlin, March 2006, p 61Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Institute of Waste Management and Contaminated Site TreatmentTechnical University of DresdenPirnaGermany