Encyclopedia of Sustainability Science and Technology

2012 Edition
| Editors: Robert A. Meyers

Green Catalytic Transformations

  • James H. Clark
  • James W. Comerford
  • D. J. Macquarrie
Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-0851-3_380

Definition of the Subject and Its Importance

With ever-increasing demand of chemical products on a global scale, as well as poor public image in recent years, there has been increasing pressure for chemistry industry to become more efficient and sustainable. Processes and catalytic cycles on large scales are being scrutinized by companies to enhance efficiency, reduce environmental impact and associated costs using state-of-the-art research and technology. An overwhelming number of new and improved catalytic transformations are reported in many different fields on a daily basis. However, a catalytic transformation must fulfill a number of criteria to be deemed as “green.” The process/catalytic cycle must exhibit a notable improvement on existing syntheses, not only in terms of activity, but as an overall process by assessing waste produced throughout (cradle to grave concept including even the synthesis of the catalyst itself), potential reusability of catalyst, as well as ease of...

This is a preview of subscription content, log in to check access.


  1. 1.
    Clark JH (1995) Chemistry of waste minimization. Chapman and Hall, CambridgeCrossRefGoogle Scholar
  2. 2.
    Clark JH, Rhodes CN (2000) Clean synthesis using porous inorganic solid catalysts and supported reagents. Royal Society of Chemistry, CambridgeGoogle Scholar
  3. 3.
    Rabo JA, Schoonover MW (2001) Early discoveries in zeolite chemistry and catalysis at Union Carbide and follow-up in industrial catalysis. Appl Catal A 222:261CrossRefGoogle Scholar
  4. 4.
    Nagy JB, Bodart P, Hannus I, Kirics I (1998) Synthesis, characterisation and use of zeolitic materials. DecaGen Ltd., Hungary, p165Google Scholar
  5. 5.
    Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquérol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603CrossRefGoogle Scholar
  6. 6.
    Kissin YV (2001) Chemical mechanisms of catalytic cracking over solid acidic catalysts: alkanes and alkenes. Catal Rev 43(1):85CrossRefGoogle Scholar
  7. 7.
    Zhuang JQ et al (2004) Solid-state MAS NMR studies on the hydrothermal stability of the zeolite catalysts for residual oil selective catalytic cracking. J Catal 228(1):234CrossRefGoogle Scholar
  8. 8.
    Caeiro G, Magnoux P, Lopes JM, Ribeiro FR, Menezes SMC, Costa AF, Cerqueira HS (2006) Stabilization effect of phosphorus on steamed H-MFI zeolites. Appl Catal A 314(2):160CrossRefGoogle Scholar
  9. 9.
    Bao X et al (2005) Enhancement on the hydrothermal stability of ZSM-5 zeolites by the cooperation effect of exchanged lanthanum and phosphoric species. J Mol Struct 737(2–3):271Google Scholar
  10. 10.
    Blasco T, Corma A, Martínez-Triguero J (2006) Hydrothermal stabilization of ZSM-5 catalytic-cracking additives by phosphorus addition. J Catal 237(2):267CrossRefGoogle Scholar
  11. 11.
    Ding W et al (2007) Understanding the enhancement of catalytic performance for olefin cracking: hydrothermally stable acids in P/HZSM-5. J Catal 248(1):20CrossRefGoogle Scholar
  12. 12.
    Barros ZS, Zotin FMZ, Henriques CA (2007) Conversion of natural gas to higher valued products: light olefins production from methanol over ZSM-5 zeolites. Stud Surf Sci Catal 167:255CrossRefGoogle Scholar
  13. 13.
    Lu R, Cao Z, Liu X (2008) Catalytic activity of phosphorus and steam modified HZSM-5 and the theoretical selection of phosphorus grafting model. J Nat Gas Chem 17(2):142CrossRefGoogle Scholar
  14. 14.
    Gao X et al (2009) Modification of ZSM-5 zeolite for maximizing propylene in fluid catalytic cracking reaction. Catal Commun 10(14):1787CrossRefGoogle Scholar
  15. 15.
    Brouwer DM, Hogeveen H (1972) Electrophilic substitutions at alkanes and in alkylcarbonium ions. Prog Phys Org Chem 9:179CrossRefGoogle Scholar
  16. 16.
    Guisnet M, Andy P, Boucheffa Y, Gnep NS, Travers C, Benazzi E (1998) Selective isomerization of n-butenes into isobutene over aged H-ferrierite catalyst: nature of the active species. Catal Lett 50:159CrossRefGoogle Scholar
  17. 17.
    Santacesaria E, Di Serio M, Cozzolino M, Tesser R (2004) DGMK-conference C4/C5-hydrocarbons: routes to higher value-added products, MunichGoogle Scholar
  18. 18.
    Seo G et al (1996) Skeletal isomerization of 1-butene over ferrierite and ZSM-5 zeolites: influence of zeolite acidity. Catal Lett 36(3–4):249CrossRefGoogle Scholar
  19. 19.
    Mériaudeau P, Tuan VA, Le NH, Szabo G (1997) Selective isomerization of n-Butene into isobutene over deactivated H–Ferrierite catalyst: further investigations. J Catal 169(1):397CrossRefGoogle Scholar
  20. 20.
    Asensi MA, Martínez A (1999) Selective isomerization of n-butenes to isobutene on high Si/Al ratio ferrierite in the absence of coke deposits: implications on the reaction mechanism. Appl Catal A 183:155CrossRefGoogle Scholar
  21. 21.
    Wichterlova B et al (1999) Effect of bronsted and lewis sites in ferrierites on skeletal isomerization of n-butenes. Appl Catal A 182(2):297CrossRefGoogle Scholar
  22. 22.
    Auerbach SM, Carrado KA, Dutta PK (2003) Handbook of zeolite science and technology. Marcel Dekker, p 481Google Scholar
  23. 23.
    Shouro D et al (2000) Mesoporous silica FSM-16 catalysts modified with various oxides for the vapor-phase Beckmann rearrangement of cyclohexanone oxime. Appl Catal A 198(1):275–282CrossRefGoogle Scholar
  24. 24.
    Chaudhari K et al (2002) Beckmann rearrangement of cyclohexanone oxime over mesoporous Si-MCM-41 and Al-MCM-41 molecular sieves. J Mol Catal A Chem 177(2):247CrossRefGoogle Scholar
  25. 25.
    Zhang Y et al (2005) Beckmann rearrangement of cyclohexanone oxime over Hβ zeolite and Hβ zeolite-supported boride. Catal Commun 6:53CrossRefGoogle Scholar
  26. 26.
    Dai LX et al (1997) Development of advanced zeolite catalysts for the vapor phase Beckmann rearrangement of cyclohexanone oxime. Appl Surf Sci 121/122: 335CrossRefGoogle Scholar
  27. 27.
    Misono M, Inui T (1999) New catalytic technologies in Japan. Catal Today 51:369CrossRefGoogle Scholar
  28. 28.
    Izumi Y et al (2007) Development and Industrialization of the Vapor-Phase Beckmann Rearrangement Process. Bull Chem Soc Jpn 80(7):1280–1287CrossRefGoogle Scholar
  29. 29.
    Roffia P, Leofanti G, Cesana A, Mantegazza M, Padovan M, Petrini G, Tonti S, Gervasutti P (1990) Cyclohexanone ammoximation: a break through in the 6-caprolactam production process. Stud Surf Sci Catal 55:43CrossRefGoogle Scholar
  30. 30.
    Palkovits R, Schmidt W, Ilhan Y, Erdem-S_enatalar A, Schüth F (2009) Crosslinked TS-1 as stable catalyst for the Beckmann rearrangement of cyclohexanone oxime. Microporous Mesoporous Mater 117:228CrossRefGoogle Scholar
  31. 31.
    Kumar R, Rao GN, Ratnasamy P (1989) Influence of the pore geometry of medium pore zeolites ZSM-5, -22, -23, -48 and -50 on shape selectivity in reactions of aromatic hydrocarbons. Stud Surf Sci Catal 49:1141CrossRefGoogle Scholar
  32. 32.
    Sotelo JL, Uguina MA, Valverde JL, Serrano DP (1993) Kinetics of toluene alkylation with methanol over magnesium-modified ZSM-5. Ind Eng Chem Res 32:2548CrossRefGoogle Scholar
  33. 33.
    Climent MJ, Corma A, Velty A (2004) Synthesis of hyacinth, vanilla, and blossom orange fragrances: the benefit of using zeolites and delaminated zeolites as catalysts. Appl Catal A 263(2):155CrossRefGoogle Scholar
  34. 34.
    Climent MJ, Corma A, Garcia H, Guil-Lopez R, Iborra S, Fornés V (2001) Acid–base bifunctional catalysts for the preparation of fine chemicals: synthesis of jasminaldehyde. J Catal 197(2):385CrossRefGoogle Scholar
  35. 35.
    Climent MJ, Corma A, Velty A, Susarte M (2000) Zeolites for the production of fine chemicals: synthesis of the fructone fragrancy. J Catal 196(2):345CrossRefGoogle Scholar
  36. 36.
    Kantam ML et al (2005) Friedel–Crafts acylation of aromatics and heteroaromatics by beta zeolite. J Mol Catal A Chem 225(1):15CrossRefGoogle Scholar
  37. 37.
    Andy et al (2000) Acylation of 2-methoxynaphthalene and isobutylbenzene over zeolite beta. J Catal 192(1):215Google Scholar
  38. 38.
    Heinichen HK, Holderich WF (1999) Acylation of 2-methoxynaphthalene in the presence of modified zeolite HBEA. J Catal 185(2):408CrossRefGoogle Scholar
  39. 39.
    Casagrande M, Storaro L, Lenarda M, Ganzerla R (2000) Highly selective Friedel–Crafts acylation of 2-methoxynaphthlene catalyzed by H-BEA zeolite. Appl Catal A 201(2):263CrossRefGoogle Scholar
  40. 40.
    Bejblova M, Zilkova N, Cejka J (2008) Transformations of aromatic hydrocarbons over zeolites. Res Chem Intermed 34(5–7):439CrossRefGoogle Scholar
  41. 41.
    Guggenheim S, Martin RT (1995) Definition of clay and clay mineral: joint report of the aipea nomenclature and CMS nomenclature committees. Clays Clay Miner 43(2):255CrossRefGoogle Scholar
  42. 42.
    Velde B, Meunier A (2008) The origin of clay minerals in soils and weathered rocks. Springer, Berlin Heidelberg, Chapter 1CrossRefGoogle Scholar
  43. 43.
    Clark JH, RhodesCN (2000) Clean synthesis using porous inorganic solid catalysts and supported reagents. R Soc Chem, Chapter 3 clay materials, p 38Google Scholar
  44. 44.
    Duc M et al (2005) Sensitivity of the acid–base properties of clays to the methods of preparation and measurement: 1. Literature review. J Colloid Interface Sci 289:139CrossRefGoogle Scholar
  45. 45.
    Brown DR, Rhodes CN (1997) Bronsted and lewis acid catalysis with ion-exchange clays. Catal Lett 45(1–2):35CrossRefGoogle Scholar
  46. 46.
    Ravichandran J, Lakshmanan CM, Sivasankar B (1996) Acid activated montmorillonite and vermiculite clays as dehydration and cracking catalysts. React Kinet Catal Lett 59(2):301CrossRefGoogle Scholar
  47. 47.
    Ravichandran J, Sivasankar B (1997) Properties and catalytic activity of acid-modified montmorillonite and vermiculite. Clays Clay Miner 45(6):854CrossRefGoogle Scholar
  48. 48.
    Kloprogge JT, Duong LV, Frost RL (2005) A review of the synthesis and characterization of pillared clays and related porous materials for cracking of vegetable oil to produce biofuels. Environ Geol 47:967CrossRefGoogle Scholar
  49. 49.
    Reddy CR et al (2007) Surface acidity study of Mn+−montmorillonite clay catalysts by FT-IR spectroscopy: correlation with esterification activity. Catal Commun 8:241CrossRefGoogle Scholar
  50. 50.
    Reddy CR et al (2004) Synthesis of phenylacetates using aluminium-exchanged montmorillonite clay catalyst. J Mol Catal A Chem 223(1):117CrossRefGoogle Scholar
  51. 51.
    da Silva et al (2009) Etherification of glycerol with benzyl alcohol catalyzed by solid acids. J Braz Chem Soc. 20(2):201CrossRefGoogle Scholar
  52. 52.
    Salmon M, Zavala N, Martinez M, Miranda R, Cruz R, Cardenas J, Gavino R, Cabrera A (1994) Cyclic and linear oligomerization reaction of 3, 4, 5-trimethoxybenzyl alcohol with a bentonite-clay. Tetrahedron Lett 35(32):5797CrossRefGoogle Scholar
  53. 53.
    Sabu KR, Sukumar R, Lalithambika M (1993) Acidic properties and catalytic activity of natural kaolinitic clays for Friedel–Crafts alkylation. Bull Chem Soc Jpn 66:3535CrossRefGoogle Scholar
  54. 54.
    Okada S, Tanaka K, Nakadaira Y, Nakagawa N (1992) Selective Friedel–Crafts alkylation on a vermiculite, a highly active natural clay mineral with Lewis acid sites. Bull Chem Soc Jpn 65:2833CrossRefGoogle Scholar
  55. 55.
    Laszlo P, Mathy A (1987) Catalysis of Friedel-Crafts alkylation by a montmorillonite doped with transition-metal cations. Helv Chim Acta 70(3):577CrossRefGoogle Scholar
  56. 56.
    Clark JH, Macquarrie DJ (1997) Heterogeneous catalysis in liquid phase transformations of importance in the industrial preparation of fine chemicals. Org Process Res Dev 1:149CrossRefGoogle Scholar
  57. 57.
    Narayanan S, Deshpande K (2000) Aniline alkylation over solid acid catalysts. Appl Catal A 199(1):1CrossRefGoogle Scholar
  58. 58.
    Smith K, Ewart GM, El-Hiti GA, Randlesb KR (2004) Study of regioselective methanesulfonylation of simple aromatics with methanesulfonic anhydride in the presence of zeolite catalysts. Org Bimol Chem 2:3150CrossRefGoogle Scholar
  59. 59.
    Laidlawa P, Bethell D, Brown SM, Watson G, Willock DJ, Hutchings GJ (2002) Sulfonylation of substituted benzenes using Zn-exchanged zeolites. J Mol Catal A Chem 178(1):205CrossRefGoogle Scholar
  60. 60.
    Choudary BM, Chowdari NS, Kantam ML, Kannan R (1999) Fe(III) exchanged montmorillonite: a mild and ecofriendly catalyst for sulfonylation of aromatics. Tetrahedron Lett 40:2859CrossRefGoogle Scholar
  61. 61.
    Choudary BM, Chowdari NS, Kantam ML (2000) Friedel–Crafts sulfonylation of aromatics catalysed by solid acids: an eco-friendly route for sulfone synthesis. J Chem Soc Perkin Trans 1:2689CrossRefGoogle Scholar
  62. 62.
    Sharma SK, Parikh PA, Jasra RV (2007) Solvent free aldol condensation of propanal to 2-methylpentenal using solid base catalysts. J Mol Catal A Chem 278(1):135CrossRefGoogle Scholar
  63. 63.
    Cavani F, Trifiro F, Vaccari A (1991) Hydrotalcite-type anionic clays: preparation, properties and applications. Catal Today 11:173CrossRefGoogle Scholar
  64. 64.
    Clark JH (1994) Catalysis of organic reactions by supported inorganic reagents. VCH Publishers Inc, New YorkGoogle Scholar
  65. 65.
    Salehi P, Ali Zolfigol M, Shirini F, Baghbanzadeh M (2006) Silica sulfuric acid and silica chloride as efficient reagents for organic reactions. Curr Org Chem 10(17):2171CrossRefGoogle Scholar
  66. 66.
    Li Z, Liu J, Gong X, Mao X, Sun X, Zhao Z (2008) Silica sulfuric acid-catalyzed expeditious environment-friendly hydrolysis of carboxylic acid esters under microwave irradiation. Chem Pap 62(6):630CrossRefGoogle Scholar
  67. 67.
    Mobinikhaledi A, Foroughifar N, Fard MAB, Moghanian H, Ebrahimi S, Kalhor M (2009) Efficient one-pot synthesis of polyhydroquinoline derivatives using silica sulfuric acid as a heterogeneous and reusable catalyst under conventional heating and energy-saving microwave irradiation. Synth Commun 39:1166CrossRefGoogle Scholar
  68. 68.
    Zarei A, Hajipour AR, Khazdooz L, Mirjalili BF, Chermahini AN (2009) Rapid and efficient diazotization and diazo coupling reactions on silica sulfuric acid under solvent-free conditions. Dyes Pigm 81(1):240CrossRefGoogle Scholar
  69. 69.
    Chen X, She J, Shang Z, Wu J, Zhang P (2009) Room-temperature synthesis of pyrazoles, diazepines, β-enaminones, and β-enamino esters using silica-supported sulfuric acid as a reusable catalyst under solvent-free conditions. Synth Commun 39:947CrossRefGoogle Scholar
  70. 70.
    Wang Y, Yuan Y, Guo S (2009) Silica sulfuric acid promotes aza-Michael addition reactions under solvent-free condition as a heterogeneous and reusable catalyst. Molecules 14:4779CrossRefGoogle Scholar
  71. 71.
    Shobha D, Chari MA, Mukkanti K, Ahn KH (2009) Silica gel-supported sulfuric acid catalyzed synthesis of 1, 5-benzodiazepine derivatives. J Heterocycl Chem 46(5):1028CrossRefGoogle Scholar
  72. 72.
    Li J, Meng X, Bai B, Sun M (2010) An efficient deprotection of oximes to carbonyls catalyzed by silica sulfuric acid in water under ultrasound irradiation. Ultrason Sonochem 17:14CrossRefGoogle Scholar
  73. 73.
    Yang J, Dang N, Chang Y (2009) Silica sulfuric acid as a recyclable catalyst for a one-pot synthesis of α-aminophosphonates in solvent-free conditions. Lett Org Chem 6(6):470CrossRefGoogle Scholar
  74. 74.
    Karam A, Gu Y, Jérôme F, Douliezb J, Barrault J (2007) Significant enhancement on selectivity in silica supported sulfonic acids catalyzed reactions. Chem Comm 22:2222CrossRefGoogle Scholar
  75. 75.
    Dabiri M et al (2007) Silica sulfuric acid: an efficient and versatile acidic catalyst for the rapid and ecofriendly synthesis of 1,3,4-oxadiazoles at ambient temperature. Synth Commun 37:1201CrossRefGoogle Scholar
  76. 76.
    Shaabani A, Rahmati A (2006) Silica sulfuric acid as an efficient and recoverable catalyst for the synthesis of trisubstituted imidazoles. J Mol Catal A Chem 249(1):246CrossRefGoogle Scholar
  77. 77.
    Reddy BM, Patil MK (2009) Organic syntheses and transformations catalyzed by sulfated zirconia. Chem Rev 109(6):2185CrossRefGoogle Scholar
  78. 78.
    Reddy BM, Sreekanth PM, Lakshmanan P (2005) Sulfated zirconia as an efficient catalyst for organic synthesis and transformation reactions. J Mol Catal A Chem 237(1):93CrossRefGoogle Scholar
  79. 79.
    Deutsch J, Trunschke A, Müller D, Quaschning V, Kemnitz E, Lieske H (2004) Acetylation and benzoylation of various aromatics on sulfated zirconia. J Mol Catal A Chem 207(1):51CrossRefGoogle Scholar
  80. 80.
    Deutsch J, Prescott HA, Müller D, Kemnitz E, Lieske H (2005) Acylation of naphthalenes and anthracene on sulfated zirconia. J Catal 231(2):269CrossRefGoogle Scholar
  81. 81.
    Zane F, Melada S, Signoretto M, Pinna F (2006) Active and recyclable sulphated zirconia catalysts for the acylation of aromatic compounds. Appl Catal A 299:137CrossRefGoogle Scholar
  82. 82.
    Hino M, Arata K (1980) Synthesis of solid superacid catalyst with acid strength of H0?–16.04. J Chem Soc, Chem Commun (18):851Google Scholar
  83. 83.
    Paukshtis EA, Shmachkova VP, Kotsarenko NS (2000) Acidic properties of sulfated zirconia. React Kinet Catal Lett 71(2):385CrossRefGoogle Scholar
  84. 84.
    Clark JH (2002) Solid acids for green chemistry. Acc Chem Res 35:791CrossRefGoogle Scholar
  85. 85.
    Ratnama KJ, Reddya RS, Sekhar NS, Kantama ML, Figueras F (2007) Sulphated zirconia catalyzed acylation of phenols, alcohols and amines under solvent free conditions. J Mol Catal A Chem 276(1):230CrossRefGoogle Scholar
  86. 86.
    Comerford JW, Clark JH, Macquarrie DJ, Breeden SW (2009) Clean, reusable and low cost heterogeneous catalyst for amide synthesis. Chem Commun 14(18):2562CrossRefGoogle Scholar
  87. 87.
    Clark JH, Macquarrie DJ (2002) Handbook of green chemistry and technology. Blackwell Science Ltd, Chapter 13, Green Catalysts for IndustryGoogle Scholar
  88. 88.
    Li Z et al (2007) Silica-supported aluminum chloride: a recyclable and reusable catalyst for one-pot three-component Mannich-type reactions. J Mol Catal A Chem 272(1):132CrossRefGoogle Scholar
  89. 89.
    Choudhary VR, Jana SK, Kiran BR (2000) Highly active Si-MCM-41-supported Ga2O3 and In2O3 catalysts for friedel-crafts-type benzylation and acylation reactions in the presence or absence of moisture. J Catal 192(2):257CrossRefGoogle Scholar
  90. 90.
    Choudhary VR, Jana SK (2002) Acylation of aromatic compounds using moisture insensitive mesoporous Si-MCM-41 supported Ga2O3 catalyst. Synth Commun 32(18):2843CrossRefGoogle Scholar
  91. 91.
    Choudhary VR, Jana SK, Patil NS (2001) Acylation of benzene over clay and mesoporous Si-MCM-41 supported InCl3, GaCl3 and ZnCl2 catalysts. Catal Lett 76(3):235CrossRefGoogle Scholar
  92. 92.
    Choudhary VR, Patil KY, Jana SK (2004) Acylation of aromatic alcohols and phenols over InCl3/montmorillonite K-10 catalysts. J Chem Sci 116(3):175CrossRefGoogle Scholar
  93. 93.
    Derouane EG, Dillon CJ, Bethell D, Derouane-Abd Hamid SB (1999) Zeolite catalysts as solid solvents in fine chemicals synthesis: 1. catalyst deactivation in the Friedel–Crafts acetylation of anisole. J Catal 187(1):209CrossRefGoogle Scholar
  94. 94.
    Derouane EG, Crehan G, Dillon CJ, Bethell D, He H, Derouane-Abd Hamid SB (2000) Zeolite catalysts as solid solvents in fine chemicals synthesis: 2. competitive adsorption of the reactants and products in the Friedel–Crafts acetylations of anisole and toluene. J Catal 194(2):410CrossRefGoogle Scholar
  95. 95.
    Yadav GD, George G (2006) Friedel–Crafts acylation of anisole with propionic anhydride over mesoporous superacid catalyst UDCaT-5. Microporous Mesoporous Mater 96(1–3):36CrossRefGoogle Scholar
  96. 96.
    Ishitani H, Naito H, Iwamoto M (2008) Fridel-Crafts acylation of anisole with carboxylic anhydrides of large molecular sizes on mesoporous silica catalyst. Catal Lett 120(1–2):14CrossRefGoogle Scholar
  97. 97.
    Sarvari MH, Sharghi H (2005) Solvent-free catalytic Friedel-Crafts acylation of aromatic compounds with carboxylic acids by using a novel heterogeneous catalyst system: p-toluenesulfonic acid/graphite. Helv Chim Acta 88:2282CrossRefGoogle Scholar
  98. 98.
    Wagholikar SG, Niphadkar PS, Mayadevi S, Sivasanker S (2007) Acylation of anisole with long-chain carboxylic acids over wide pore zeolites. Appl Catal A 317(2):250CrossRefGoogle Scholar
  99. 99.
    Zarei A, Hajipour AR, Khazdooz L (2008) Friedel–Crafts acylation of aromatic compounds with carboxylic acids in the presence of P2O5/SiO2 under heterogeneous conditions. Tetrahedron Lett 49:6715CrossRefGoogle Scholar
  100. 100.
    Clark JH (1980) Fluoride ion as a base in organic synthesis. Chem Rev 80:429CrossRefGoogle Scholar
  101. 101.
    Blass BE (2002) KF/Al2O3 mediated organic synthesis. Tetrahedron 58:9301CrossRefGoogle Scholar
  102. 102.
    Handa H, Baba T, Sugisawa H, Ono Y (1998) Highly efficient self-condensation of benzaldehyde to benzyl benzoate over KF-loaded alumina. J Mol Catal A Chem 134(1–3):171CrossRefGoogle Scholar
  103. 103.
    Kabashima H, Tsuji H, Nakatab S, Tanaka Y, Hattori H (2000) Activity for base-catalyzed reactions and characterization of alumina-supported KF catalysts. Appl Catal A 194–195:227Google Scholar
  104. 104.
    Tsuji H, Kabashima H, Kita H, Hattori H (1995) Thermal activation of KF/alumina catalyst for double bond isomerization and Michael addition. React Kinet Catal Lett 56(2):363CrossRefGoogle Scholar
  105. 105.
    Kochkar H, Clacens JM, Figueras F (2002) Isomerization of styrene epoxide on basic solids. Catal Lett 78(1–4):91CrossRefGoogle Scholar
  106. 106.
    Nakano Y, Niki S, Kinouchi S, Miyamae H, Igarashi M (1992) Knoevenagel reaction of malononitrile with acetone followed by double cyclization catalyzed by KF-coated alumina in aqueous solution. Bull Chem Soc Jpn 65(11):2934CrossRefGoogle Scholar
  107. 107.
    Wang WC, Wang D, Forray C, Vaysse PJJ, Brancheko TA, Gluchowski C (1994) A convenient synthesis of 2-amino-2-oxazolines and their pharmacological evaluation at cloned human α adrenergic receptors. Bioorg Med Chem Lett 4(19):2317CrossRefGoogle Scholar
  108. 108.
    Yamawaki J, Ando T, Hanafusa T (1981) N-Alkylation of amides and N-heterocycles with potassium fluoride on alumina. Chem Lett 1143–1146Google Scholar
  109. 109.
    Yamawaki J, Ando T (1980) Potassium fluoride on alumina as a base for crown ether synthesis. Chem Lett 9(5):533–536CrossRefGoogle Scholar
  110. 110.
    Sawyer JS, Schmittling EA (1993) Synthesis of diaryl ethers, diaryl thioethers, and diarylamines mediated by potassium fluoride-alumina and 18-crown-6. J Org Chem 58(12):3229CrossRefGoogle Scholar
  111. 111.
    Yadav VK, Kapoor KK (1996) KF adsorbed on alumina effectively promotes the epoxidation of electron deficient alkenes by anhydrous t-BuOOH. Tetrahedron 52:3659CrossRefGoogle Scholar
  112. 112.
    Moghaddam FM, Bardajee GR, Veranlou ROC (2005) KF/Al2O3-mediated Michael addition of thiols to electron-deficient olefins. Synth Commun 35(18):2427CrossRefGoogle Scholar
  113. 113.
    Villemin D, Alloum AB (1992) Potassium fluoride on alumina: an easy synthesis of 4-alkylidene-2-thione-1, 3-oxathiolanes from α-acetylenic alcohols. Synth Commun 22:1351CrossRefGoogle Scholar
  114. 114.
    Villemin D, Hachemi M, Lalaoui M (1996) Potassium fluoride on alumina: synthesis of O-aryl N, N-dimethylthiocarbamates and their rearrangement into S-aryl N, N-dimethyl-thiocarbamates under microwave irradiation. Synth Commun 26(13):2461CrossRefGoogle Scholar
  115. 115.
    Kawanami Y, Yuasa H, Toriyama F, Yoshida S, Baba T (2003) Addition of silanes to benzaldehyde catalyzed by KF loaded on alumina. Catal Commun 4:455CrossRefGoogle Scholar
  116. 116.
    Baba T, Kato A, Yuasa H, Toriyama F, Handa H, Ono Y (1998) New Si-C bond forming reactions over solid-base catalysts. Catal Today 44:271CrossRefGoogle Scholar
  117. 117.
    Clark JH, Cork DG, Robertson MS (1983) Fluoride ion catalysed Michael reactions. Chem Lett 12(8):1145CrossRefGoogle Scholar
  118. 118.
    Campelo JM, Climent MS, Marinas JM (1992) Michael addition of nitromethane to 3-buten-2-one catalyzed by potassium fluoride supported on Al2O3, ZnO, SnO2, sepiolite, AlPO4, AlPO4−Al2O3 and AlPO4−ZnO. React Kinet Catal Lett 47:7CrossRefGoogle Scholar
  119. 119.
    Kabashima H, Tsuji H, Shibuya T, Hattori H (2000) Michael addition of nitromethane to α, β-unsaturated carbonyl compounds over solid base catalysts. J Mol Catal A Chem 155(1–2):23CrossRefGoogle Scholar
  120. 120.
    Wang SH, Wang XS, Shi DQ, Tu SJ (2003) Michael addition reaction of dimedone and chalcone catalyzed by KF/Al2O3. Chin J Org Chem 23(10):1146Google Scholar
  121. 121.
    Figueras F et al (2004) Effect of the support on the basic and catalytic properties of KF. J Catal 221(2):483CrossRefGoogle Scholar
  122. 122.
    Tian DB, Zhu J, Zhu JF, Shi YX, Wang JT (2004) Michael addition of alkyl amine to α, β-unsaturated carbonyl compounds catalyzed by KF/Al2O3. Chin Chem Lett 15(8):883Google Scholar
  123. 123.
    Moghaddam FM, Bardajee GR, Taimoory SMD (2006) KF/Al2O3 mediated aza-Michael addition of indoles to electron-deficient olefins. Lett Org Chem 3(2):157CrossRefGoogle Scholar
  124. 124.
    Wang X, Quan Z, Wang JK, Zhanga Z, Wang M (2006) A practical and green approach toward synthesis of N3-substituted dihydropyrimidinones: using Aza-Michael addition reaction catalyzed by KF/Al2O3. Bioorg Med Chem Lett 16(17):4592CrossRefGoogle Scholar
  125. 125.
    Lenardão EJ, Ferreira PC, Jacob RG, Perin G, Leiteb FPL (2007) Solvent-free conjugated addition of thiols to citral using KF/alumina: preparation of 3-thioorganylcitronellals, potential antimicrobial agents. Tetrahedron Lett 48:6763CrossRefGoogle Scholar
  126. 126.
    Lenardão EJ, Trecha DO, Ferreira PC, Jacob RG, Perin G (2009) Green Michael addition of thiols to electron deficient alkenes using KF/alumina and recyclable solvent or solvent-free conditions. J Braz Chem Soc 20(1):93CrossRefGoogle Scholar
  127. 127.
    Clark JH, Farmer TJ, Macquarrie DJ (2009) The derivatization of bioplatform molecules by using KF/Alumina catalysis. ChemSusChem 2(11):1025CrossRefGoogle Scholar
  128. 128.
    Ballinia R, Palmieri A (2006) Potassium fluoride/basic alumina as far superior heterogeneous catalyst for the chemoselective conjugate addition of nitroalkanes to electron-poor alkenes having two electron withdrawing groups in α- and β-positions. Adv Synth Catal 348(10):1154CrossRefGoogle Scholar
  129. 129.
    Macquarrie DJ (2009) Organically modified micelle templated silicas in green chemistry. Top Catal 52(12):1640CrossRefGoogle Scholar
  130. 130.
    Utting KA, Macquarri DJ (2000) Silica-supported imines as mild, efficient base catalysts. New J Chem 24:591CrossRefGoogle Scholar
  131. 131.
    Motokura K, Tomita M, Tada M, Iwasawa Y (2009) Michael reactions catalyzed by basic alkylamines and dialkylaminopyridine immobilized on acidic silica-alumina surfaces. Top Catal 52:579CrossRefGoogle Scholar
  132. 132.
    Isobe K, Hoshi T, Suzuki T, Hagiwara H (2005) Knoevenagel reaction in water catalyzed by amine supported on silica gel. Mol Divers 9(4):317CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • James H. Clark
    • 1
  • James W. Comerford
    • 1
  • D. J. Macquarrie
    • 1
  1. 1.Department of ChemistryUniversity of YorkHeslingtonUK