Skip to main content

Gas Expanded Liquids for Sustainable Catalysis

  • Reference work entry
Encyclopedia of Sustainability Science and Technology
  • 512 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 6,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Carbon selectivity:

Refers to the fraction of the carbon in a hydrocarbon-based feed that is utilized in making the desired product.

Compressible gas:

A gas in the vicinity of its critical temperature wherein it is highly compressible with pressure, either condensing or attaining liquid-like densities as the pressure approaches or exceeds its critical pressure. Below the critical temperature, a compressible gas will typically condense at sufficiently high pressures to produce a liquid phase.

Gas-expanded liquids:

When a liquid such as an organic solvent is pressurized with a compressible gas, the liquid phase will volumetrically expand if the gas dissolves in it. The volumetrically expanded liquid phase is termed as a gas-expanded liquid. When the pressure is released, the dissolved gas will escape from the liquid phase causing the liquid phase to contract to its original volume.

Homogeneous catalysis:

Refers to a process wherein the reactants, catalyst, and products are soluble in a single phase and the catalytic reaction occurs in that phase.

Multiphase catalysis:

Refers to a process wherein the reactants, catalyst, and products are present in two or more different immiscible phases separated by phase boundary(ies). The reaction typically occurs at a boundary between two phases.

Renewable feedstock:

Refers to a feedstock from nature whose use has minimal adverse impact on the ecosystem and that has the ability to manifest itself again in nature in a matter of a few months to a few years rather than in hundreds to thousands of years.

Solvent engineering:

Exploiting the synergies between catalysis and solvent media for enhancing rates, selectivity, and separations in a sustainable manner.

Supercritical fluid:

A substance that is above its critical pressure (P c) and critical temperature (T c ). For applications in catalysis and separations, the near-critical region [0.9–1.2 T c (in K) and 0.9–2 P c] wherein small changes in temperature and/or pressure yield relatively large changes (from gas-like to liquid-like values) in density and transport properties, is generally of interest.

Sustainability:

Sustainability of a catalytic process refers to the long-term environmental, social, and economic viability of the process.

Turnover frequency (TOF):

Quantifies the intrinsic activity of a catalyst in converting the reactants to products. It is usually expressed in terms of the rate at which the reactants are converted to products [(moles of substrate converted)/(gram atoms of catalyst used)/(time)].

Bibliography

Primary Literature

  1. Jessop PG, Subramaniam B (2007) Gas-expanded liquids. Chem Rev 107:2666–2694

    Article  CAS  Google Scholar 

  2. Lopez-Castillo ZK, Aki SNVK, Stadtherr MA, Brennecke JF (2006) Enhanced solubility of oxygen and carbon monoxide in CO2-expanded liquids. Ind Eng Chem Res 45:5351–5360

    Article  CAS  Google Scholar 

  3. Lopez-Castillo ZK, Aki SNVK, Stadtherr MA, Brennecke JF (2008) Enhanced solubility of hydrogen in CO2-expanded liquids. Ind Eng Chem Res 47:570–576

    Article  CAS  Google Scholar 

  4. Zevnik L, Levec J (2007) Hydrogen solubility in CO2-expanded 2-propanol and in propane-expanded 2-propanol determined by an acoustic sensor. J Supercrit Fluids 41:335–342

    Article  CAS  Google Scholar 

  5. Xie Z, Snavely WK, Scurto AM, Subramaniam B (2009) Solubilities of CO and H2 in neat and CO2-expanded hydroformylation reaction mixtures containing 1-octene and nonanal up to 353 K and 9 Mpa. J Chem Eng Data 54:1633–1642

    Article  CAS  Google Scholar 

  6. Sheldon RA (1994) Consider the environmental quotient. Chem Tech 24:38–47

    CAS  Google Scholar 

  7. Sheldon RA, Arends IWCE, Hanefeld U (2007) Green chemistry and catalysis. Wiley, Weinheim

    Book  Google Scholar 

  8. Tundo AP, Black DS, Breen J, Collins T, Memoli S, Miyamoto J, Poliakoff M, Tumas W (2000) Synthetic pathways and processes in green chemistry: introductory overview. Pure Appl Chem 72:1207–1228

    Article  CAS  Google Scholar 

  9. DeSimone JM (2002) Practical approaches to green solvents. Science 297:799–803

    Article  CAS  Google Scholar 

  10. Adams DJ, Dyson PJ, Tavener SJ (2004) Chemistry in alternative reaction media. Wiley, Chichester

    Google Scholar 

  11. Eckert CA, Liotta CL, Bush B, Brown JS, Hallett JP (2004) Sustainable reactions in tunable solvents. J Phys Chem B 108:18108–18118

    Article  CAS  Google Scholar 

  12. Seki T, Baiker A (2009) Catalytic oxidations in dense carbon dioxide. Chem Rev 109:2409–2454

    Article  CAS  Google Scholar 

  13. Morgenstern DA, LeLacheur RM, Morita DK, Borkowsky SL, Feng S, Brown GH, Luan L, Gross MF, Burk MJ, Tumas W (1996) Supercritical carbon dioxide as a substitute solvent for chemical synthesis and catalysis. In: Anastas PT, Williamson TC (eds) Green chemistry: designing chemistry for the environment, ACS symposium series vol 626. American Chemical Society, Washington, DC, pp 132–151

    Chapter  Google Scholar 

  14. Jessop PG, Leitner W (1999) Chemical synthesis using supercritical fluids. Wiley, Weinheim

    Book  Google Scholar 

  15. Amandi R, Hyde J, Poliakoff M (2003) Heterogeneous reactions in supercritical carbon dioxide. In: Aresta M (ed) Carbon dioxide recovery and utilization. Kluwer, Dordrecht, pp 169–180

    Google Scholar 

  16. DeSimone JM, Tumas W (2003) Green chemistry using liquid and supercritical carbon dioxide. Oxford University Press, New York

    Google Scholar 

  17. Gordon CM, Leitner W (2004) Supercritical fluids as replacements for conventional organic solvents. Chim Oggi 22:39–41

    CAS  Google Scholar 

  18. Beckman EJ (2002) Using CO2 to produce chemical products sustainably. Environ Sci Technol 36:347A–353A

    Article  CAS  Google Scholar 

  19. Licence P, Poliakoff M (2005) Economics and scale-up. In: Cornils B, Hermann WA, Horváth IT, Leitner W, Mecking S, Olivier-Bourbigou H, Vogt D (eds) Multiphase homogeneous catalysis, vol 2. Wiley, Weinheim, pp 734–746

    Google Scholar 

  20. Arai M, Fujita SI, Shirai M (2009) Multiphase catalytic reaction in/under dense phase CO2. J Supercrit Fluids 47:351–356

    Article  CAS  Google Scholar 

  21. Li CJ, Chan TH (1997) Organic reactions in aqueous media. Wiley, New York

    Google Scholar 

  22. Cornils B, Herrmann WA (1998) Aqueous-phase organometallic catalysis. Wiley, Weinheim

    Google Scholar 

  23. Savage PE (2009) A perspective on catalysis in sub- and supercritical water. J Supercrit Fluids 47:407–414

    Article  CAS  Google Scholar 

  24. Musie G, Wei M, Subramaniam B, Busch DH (2001) Catalytic oxidations in carbon dioxide-based reaction media, including novel CO2-expanded phases. Coord Chem Rev 219–221:789–820

    Article  Google Scholar 

  25. Hutchenson KW, Scurto AM, Subramaniam B (2009) Gas-expanded liquids and near-critical media: green chemistry and engineering, vol 1006, ACS symposium series. American Chemical Society, Washington, DC

    Book  Google Scholar 

  26. Akien GR, Poliakoff M (2009) A critical look at reactions in class I and II gas-expanded liquids using CO2 and other gases. Green Chem 11:1083–1100

    Article  CAS  Google Scholar 

  27. Scurto AM, Hutchenson KW, Subramaniam B (2009) Gas-expanded liquids (GXLs): fundamentals and applications. In: Hutchenson KW, Scurto AM, Subramaniam B (eds) Gas-expanded liquids and near-critical media: green chemistry and engineering, vol 1006, ACS symposium series. American Chemical Society, Washington, DC, pp 3–37

    Chapter  Google Scholar 

  28. Wasserscheid P, Welton T (2002) Ionic liquids in synthesis. Wiley, Weinheim

    Book  Google Scholar 

  29. Rogers RD, Seddon KR, Volkov S (2003) Green industrial applications of ionic liquids. Kluwer, Dordrecht

    Book  Google Scholar 

  30. Pârvulescu VI, Hardacre C (2007) Catalysis in ionic liquids. Chem Rev 107:2615–2665

    Article  CAS  Google Scholar 

  31. Jessop PG, Heldebrant DJ, Xiaowang L, Eckert CA, Liotta CL (2005) Reversible nonpolar-to-polar solvent. Nature 436:1102

    Article  CAS  Google Scholar 

  32. Liu Y, Jessop PG, Cunningham M, Eckert CA (2006) Liotta CL, switchable sufactants. Science 313:958–960

    Article  CAS  Google Scholar 

  33. Phan CD, Heldebrant DJ, Huttenhower H, John E, Li X, Pollet P, Wang R, Eckert CA, Liotta CL, Jessop PG (2008) Switchable solvents consisting of amidine/alcohol or guanidine/alcohol mixtures. Ind Eng Chem Res 47:539–545

    Article  CAS  Google Scholar 

  34. Phan L, Brown H, White J, Hodgson A, Jessop PG (2009) Soybean oil extraction and separation using switchable or expanded solvents. Green Chem 11:53–59

    Article  CAS  Google Scholar 

  35. Phan L, Jessop PG (2009) Switching the hydrophilicity of a solute. Green Chem 11:307–308

    Article  CAS  Google Scholar 

  36. Ahosseini A, Ren W, Scurto AM (2009) Understanding biphasic ionic liquid/CO2 systems for homogeneous catalysis: hydroformylation. Ind Eng Chem Res 48:4254–4265

    Article  CAS  Google Scholar 

  37. Anastas P, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, New York

    Google Scholar 

  38. Anastas PT, Zimmerman JB (2003) Design through the 12 principles of green engineering. J Environ Sci Technol 37:95A–101A

    CAS  Google Scholar 

  39. Allen DT, Shonnard DR (2001) Green engineering: environmentally conscious design of chemical processes. Prentice Hall, New York

    Google Scholar 

  40. Dudukovic MP (2009) Frontiers in reactor engineering. Science 325:698–701

    Article  CAS  Google Scholar 

  41. Kordikowski A, Schenk AP, Van Nielen RM, Peters CJ (1995) Volume expansions and vapor-liquid equilibria of binary mixtures of a variety of polar solvents and certain near-critical solvents. J Supercrit Fluids 8:205–216

    Article  CAS  Google Scholar 

  42. Ren W, Scurto AM (2007) High-Pressure phase equilibria with compressed gases. Rev Sci Instrum 78:125104–125107

    Article  CAS  Google Scholar 

  43. Heldebrant DJ, Witt H, Walsh S, Ellis T, Rauscher J, Jessop PG (2006) Liquid polymers as solvents for catalytic reductions. Green Chem 8:807–815

    Article  CAS  Google Scholar 

  44. Ren W, Sensenich B, Scurto AM (2010) High-pressure phase equilibria of carbon dioxide (CO2) + n-alkyl-imidazolium bis(trifluoromethylsulfonyl)amide ionic liquids. J Chem Thermodyn 42:305–311

    Article  CAS  Google Scholar 

  45. Rajagopalan B, Wie M, Musie GT, Subramaniam B, Busch DH (2003) Homogeneous catalytic epoxidation of organic substrates in CO2-expanded solvents in the presence of water soluble oxidants and catalysts. Ind Eng Chem Res 42:6505–6510

    Article  CAS  Google Scholar 

  46. Ohgaki K, Takata H, Washida T, Katayama T (1988) Phase equilibria of four binary systems containing propylene. Fluid Phase Equilibr 43:105–113

    Article  Google Scholar 

  47. Peng DB, Robinson DT (1976) A new two-constant equation of state. Ind Eng Chem Fund 15:59–64

    Article  CAS  Google Scholar 

  48. Houndonougbo Y, Jin H, Rajagopalan B, Wong K, Kuczera K, Subramaniam B, Laird BB (2006) Phase equilibria in carbon dioxide-expanded solvents: experiment and molecular simulations. J Phys Chem B 110:13195–13202

    Article  CAS  Google Scholar 

  49. Swalina C, Arzhantsev S, Li HP, Maroncelli M (2008) Solvation and solvatochromism in CO2-expanded liquids. 3. the dynamics of nonspecific preferential solvation. J Phys Chem B 112:14959–14970

    Article  CAS  Google Scholar 

  50. Subramaniam B (2010) Gas-expanded liquids for sustainable catalysis and novel materials. Coord Chem Rev 254:1843–1853

    Article  CAS  Google Scholar 

  51. Sih R, Dehghani F, Foster NR (2007) Viscosity measurements on gas expanded liquid systems-methanol and carbon dioxide. J Supercrit Fluids 41:148–157

    Article  CAS  Google Scholar 

  52. Kelkar MS, Maginn EJ (2007) Effect of temperature and water content on the shear viscosity of the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide as studied by atomistic simulations. J Phys Chem B 111:4867–4876

    Article  CAS  Google Scholar 

  53. Ahosseini A, Ortega E, Sensenich B, Scurto AM (2009) Viscosity of n-alkyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)amide ionic liquids saturated with compressed CO2. Fluid Phase Equilibr 286:62–68

    Article  CAS  Google Scholar 

  54. Maxey NB (2006) Transport and phase-transfer catalysis in gas-expanded liquids. PhD Dissertation, Georgia Institute of Technology, Atlanta

    Google Scholar 

  55. Lin IH, Tan CS (2008) Diffusion of benzonitrile in CO2-expanded ethanol. J Chem Eng Data 53:1886–1891

    Article  CAS  Google Scholar 

  56. Roškar V, Dombro RA, Prentice GA, Westgate CR, McHugh MA (1992) Comparison of the dielectric behavior of mixtures of methanol with carbon dioxide and ethane in the mixture-critical and liquid regions. Fluid Phase Equilibr 77:241–259

    Article  Google Scholar 

  57. Wyatt VT, Bush D, Lu J, Hallett JP, Liotta CL, Eckert CA (2005) Determination of solvatochromic solvent parameters for the characterization of gas-expanded liquids. J Supercrit Fluids 36:16–22

    Article  CAS  Google Scholar 

  58. Abbott AP, Hope EG, Mistry R, Stuart AM (2009) Probing the structure of gas expanded liquids using relative permittivity, density and polarity measurements. Green Chem 11:1530–1535

    Article  CAS  Google Scholar 

  59. Ford JW, Janakat ME, Liu J, Liotta CL, Eckert CA (2008) Local polarity in CO2-expanded acetonitrile: A nucleophilic substitution reaction and solvatochromic probes. J Org Chem 73:3364–3368

    Article  CAS  Google Scholar 

  60. Seki TJ, Grunwaldt JD, Baiker A (2009) In situ attenuated total reflection infrared spectroscopy of imidazolium-based room-temperature ionic liquids under “supercritical” CO2. J Phys Chem B 113:114–122

    Article  CAS  Google Scholar 

  61. Burgi T, Baiker A (2006) Attenuated total reflection infrared spectroscopy of solid catalysts functioning in the presence of liquid-phase reactants. Adv Catal 50:227–283

    Article  CAS  Google Scholar 

  62. Guha D, Jin H, Dudukovic MP, Ramachandran PA, Subramaniam B (2007) Mass transfer effects during homogeneous 1-octene hydroformylation in CO2-expanded solvent: modeling and experiments. Chem Eng Sci 62:4967–4975

    Article  CAS  Google Scholar 

  63. Lyon CJ, Subramaniam B, Pereira CJ (2001) Enhanced isooctane yields for 1-butene/Isobutane alkylation on SiO2-supported Nafion® in supercritical carbon dioxide. In: Spivey JJ, Roberts GW, Davis BH (eds) Catalyst deactivation 2001. Studies in surface science and catalysis, vol 139. Elsevier, Amsterdam, pp 221–228

    Google Scholar 

  64. (a) Webb PB, Kunene TE, Cole-Hamilton DJ (2005) Continuous flow homogeneous hydroformylation of alkenes using supercritical fluids. Green Chem 7:373–379; (b) Sellin MF, Webb PB, Cole-Hamilton DJ (2001) Chem Commun 781

    Google Scholar 

  65. Thomas CA, Bonilla RJ, Huang Y, Jessop PG (2001) Hydrogenation of carbon dioxide catalysed by ruthenium trimethylphosphine complexes: effect of gas pressure and additives on rate in the liquid phase. Can J Chem 79:719–724

    CAS  Google Scholar 

  66. Combes GB, Dehghani F, Lucien FP, Dillow AK, Foster NR (2000) Asymmetric catalytic hydrogenation in CO2 expanded methanol-an application of gas anti-solvent reaction (GASR). In: Abraham MA, Hesketh RP (eds) Reaction engineering for pollution prevention. Elsevier, Amsterdam, pp 173–181

    Chapter  Google Scholar 

  67. Combes G, Coen E, Dehghani F, Foster NR (2005) Dense CO2 expanded methanol solvent system for synthesis of naproxen via enantioselective hydrogenation. J Supercrit Fluids 36:127–136

    Article  CAS  Google Scholar 

  68. Floris T, Kluson P, Muldoon MJ, Pelantova H (2010) Notes on the asymmetric hydrogenation of methyl acetoacetate in neoteric solvents. Cat Lett 134:279–287

    Article  CAS  Google Scholar 

  69. Solinas M, Pfaltz A, Cozzi P, Leitner W (2004) Enantioselective hydrogenation of imines in ionic liquid/carbon dioxide media. J Am Chem Soc 126:16142–16147

    Article  CAS  Google Scholar 

  70. Jessop PG, Stanley R, Brown RA, Eckert CA, Liotta CL, Ngo TT, Pollet P (2003) Neoteric solvents for asymmetric hydrogenation: supercritical fluids, ionic liquids, and expanded ionic liquids. Green Chem 5:123–128

    Article  CAS  Google Scholar 

  71. Jessop PG, DeHaai S, Wynne DC, Nakawatase D (2000) Carbon dioxide gas accelerates solventless synthesis. Chem Commun 8:693–694

    Article  Google Scholar 

  72. Scurto AM, Leitner W (2006) Melting point depression of organic ionic solids/liquids with carbon dioxide for enhanced catalytic processes. Chem Commun 3681–3683

    Google Scholar 

  73. Ahosseini A, Ren W, Scurto AM (2009) Hydrogenation in biphasic ionic liquid/CO2 systems. In: Hutchenson KW, Scurto AM, Subramaniam B (eds) Gas expanded liquids and near-critical media: green chemistry and engineering, vol 1006, ACS symposium series. American Chemical Society, Washington, DC, pp 218–234

    Chapter  Google Scholar 

  74. Jin H, Subramaniam B (2004) Catalytic hydroformylation of 1-octene in CO2-expanded solvent media. Chem Eng Sci 59:4887–4893

    Article  CAS  Google Scholar 

  75. Jin H, Subramaniam B, Ghosh A, Tunge J (2006) Intensification of catalytic olefin hydroformylation in CO2-expanded media. AIChE J 52:2575–2591

    Article  CAS  Google Scholar 

  76. Koeken ACJ, Benes NE, van den Broeke LJP, Keurentjes JTF (2009) Efficient hydroformylation in dense carbon dioxide using phosphorus ligands without perfluoroalkyl substituents. Adv Syn Catal 351:1142–1450

    Article  CAS  Google Scholar 

  77. Hemminger O, Marteel A, Mason MR, Davies JA, Tadd AR, Abraham MA (2002) Hydroformylation of 1-hexene in supercritical carbon dioxide using a heterogeneous rhodium catalyst. 3. Evaluation of solvent effects. Green Chem 4:507–512

    Article  CAS  Google Scholar 

  78. Webb PB, Sellin MF, Kunene TE, Williamson S, Slawin AMZ, Cole-Hamilton DJ (2003) Continuous flow hydroformylation of alkenes in supercritical fluid-ionic liquid biphasic systems. J Am Chem Soc 125:15577–15588

    Article  CAS  Google Scholar 

  79. Frisch AC, Webb PB, Zhao G, Muldoon MJ, Pogorzelec PJ, Cole-Hamilton DJ (2007) Solventless continuous flow homogeneous hydroformylation of 1-octene. Dalton Trans 47:5531–5538

    Article  CAS  Google Scholar 

  80. Wei M, Musie GT, Busch DH, Subramaniam B (2002) CO2-expanded solvents: unique and versatile media for performing homogeneous catalytic oxidations. J Am Chem Soc 124:2513–2517

    Article  CAS  Google Scholar 

  81. Wei M, Musie GT, Busch DH, Subramaniam B (2004) Autoxidation of 2,6-di-tertbutylphenol with cobalt Schiff base catalysts by oxygen in CO2-expanded liquids. Green Chem 6:387–393

    Article  CAS  Google Scholar 

  82. Zuo X, Niu F, Snavely WK, Subramaniam B, Busch DH (2010) Liquid phase oxidation of p-xylene to terephthalic acid at medium-high temperatures: multiple benefits of CO2-expanded liquids. Green Chem 12:260–267

    Article  CAS  Google Scholar 

  83. Trent DT (1996) Propylene oxide Kirk-Othmer encyclopedia of chemical technology, vol 20, 4th edn. Wiley, New York, pp 271–302

    Google Scholar 

  84. Thiele GF, Roland E (1997) Propylene epoxidation with hydrogen peroxide and titanium silicalite catalyst: activity, deactivation and regeneration of the catalyst. J Mol Catal A Chem 117:351–356

    Article  CAS  Google Scholar 

  85. Danciu T, Beckman EJ, Hancu D, Cochran RN, Grey R, Hajnik DM, Jewson J (2002) Direct synthesis of propylene oxide with CO2 as the solvent. Angew Chem Int Ed 42:1140–1142

    Article  Google Scholar 

  86. Laufer W, Meiers R, Holderich W (1999) Propylene epoxidation with hydrogen peroxide over palladium containing titanium silicalite. J Mol Catal A Chem 141:215–221

    Article  CAS  Google Scholar 

  87. Jenzer G, Mallat T, Maciejewski M, Eigenmann F, Baiker A (2001) Continuous epoxidation of propylene with oxygen and hydrogen on a Pd-Pt/TS-1 catalyst. Appl Catal A 208:125–133

    Article  CAS  Google Scholar 

  88. Nolen SA, Lu J, Brown JS, Pollet P, Eason BC, Griffith KN, Glaser R, Bush D, Lamb DR, Liotta CL, Eckert CA, Thiele GF, Bartels KA (2002) Olefin epoxidations using supercritical carbon dioxide and hydrogen peroxide without added metallic catalysts or peroxy ccids. Ind Eng Chem Res 41:316–323

    Article  CAS  Google Scholar 

  89. Hancu D, Green H, Beckman EJ (2002) H2O2 in CO2/H2O biphasic systems: green synthesis and epoxidation reactions. Ind Eng Chem Res 41:4466–4474

    Article  CAS  Google Scholar 

  90. Zha YJ, Zhang JL, Han BX, Hu SQ, Li W (2010) CO2-controlled reactors: epoxidation in emulsions with droplet size from micron to nanometre scale. Green Chem 12:452–457

    Article  CAS  Google Scholar 

  91. Herrmann WA, Fischer RW, Marz DW (1991) Methyltrioxorhenium as catalyst for olefin metathesis. Angew Chem Int Ed Engl 30:1636–1638

    Article  Google Scholar 

  92. Rudolph J, Reddy KL, Chiang JP, Sharpless KB (1997) Highly efficient epoxidation of olefins using aqueous H2O2 and catalytic methyltrioxorhenium/pyridine: pyridine-mediated ligand acceleration. J Am Chem Soc 119:6189–6190

    Article  CAS  Google Scholar 

  93. Wang WD, Espenson JH (1998) Effects of pyridine and its derivatives on the equilibria and kinetics pertaining to epoxidation reactions catalyzed by methyltrioxorhenium. J Am Chem Soc 120:11335–11341

    Article  CAS  Google Scholar 

  94. Yin G, Busch DH (2009) Mechanistic details to facilitate applications of an exceptional catalyst, methyltrioxorhenium: encouraging results from oxygen-18 isotopic probes. Catal Lett 130:52–55

    Article  CAS  Google Scholar 

  95. Lee HJ, Shi TP, Busch DH, Subramaniam B (2007) A greener, pressure intensified propylene epoxidation process with facile product separation. Chem Eng Sci 62:7282–7289

    Article  CAS  Google Scholar 

  96. Lee HJ, Ghanta M, Busch DH, Subramaniam B (2010) Towards a CO2-free ethylene oxide process: homogeneous ethylene epoxidation in gas-expanded liquids. Chem Eng Sci 65:128–134

    Article  CAS  Google Scholar 

  97. Azarnoosh A, Mcketta JJ (1959) Solubility of propylene in water. J Chem Eng Data 4:211–212

    Article  Google Scholar 

  98. Yorizane M, Sadamoto S, Yoshimura S (1968) Low-temperature vapor-liquid equilibriums. Nitrogen-propylene and carbon dioxide-methane systems. Kagaku Kogaku Ronbun 32:257–264

    Article  CAS  Google Scholar 

  99. Lee HJ, Shi TP, Subramaniam B, Busch DH (2006) Selective oxidation of propylene to propylene oxide in CO2 expanded liquid system. In: Schmidt SR (ed) Catalysis of organic reactions. CRC Press, Boca Raton, pp 447–451

    Google Scholar 

  100. Weissermel K (2003) Industrial organic chemistry, 4th edn. Wiley, Weinheim, pp 145–153

    Book  Google Scholar 

  101. Haneda A, Seki T, Kodama D, Kato M (2006) High-pressure phase equilibrium for ethylene + methanol at 278.15 K and 283.65 K. J Chem Eng Data 51:268–271

    Article  CAS  Google Scholar 

  102. West KN, Wheeler C, McCarney JP, Griffith KN, Bush D, Liotta CL, Eckert CA (2001) In situ formation of alkylcarbonic acids with CO2. J Phys Chem A 105:3947–3948

    Article  CAS  Google Scholar 

  103. Chamblee TS, Weikel RR, Nolen SA, Liotta CL, Eckert CA (2004) Reversible in situ acid formation for -pinene hydrolysis using CO2 expanded liquid and hot water. Green Chem 6:382–386

    Article  CAS  Google Scholar 

  104. Gohres JL, Marin AT, Lu J, Liotta CL, Eckert CA (2009) Spectroscopic investigation of alkylcarbonic acid formation and dissociation in CO2-expanded alcohols. Ind Eng Chem Res 48:1302–1306

    Article  CAS  Google Scholar 

  105. Alemán PA, Boix C, Poliakoff M (1999) Hydrolysis and saponification of methyl benzoates. Green Chem 1:65–68

    Article  Google Scholar 

  106. Hunter SE, Savage PE (2004) Recent advances in acid- and base-catalyzed organic synthesis in high-temperature liquid water. Chem Eng Sci 59:4903–4909

    Article  CAS  Google Scholar 

  107. Throckmorton PE, Hansen LI, Christensen RC, Pryde EH (1968) Laboratory optimization of process variables in reductive ozonolysis of methyl soyate. J Am Oil Chem Soc 45:59–62

    Article  CAS  Google Scholar 

  108. Nickell EC, Albi M, Privett OS (1976) Ozonization products of unsaturated fatty acid methyl esters. Chem Phys Lipids 17:378–388

    Article  CAS  Google Scholar 

  109. Nishikawa N, Yamada K, Matsutani S, Higo M, Kigawa H, Inagaki T (1995) Structires of ozonolysis products of methyl oleate obtained in a carboxylic acid medium. J Am Oil Chem Soc 72:735–740

    Article  CAS  Google Scholar 

  110. O’Brien M, Baxendale IR, Ley SV (2010) Flow ozonolysis using a semipermeable Teflon AF-2400 membrane to effect gas-liquid contact. Org Lett 12:1596–1598

    Article  CAS  Google Scholar 

  111. Subramaniam B, Busch DH, Danby A, Binder TP (2008) Ozonoysis reactions in liquid CO2 and CO2-expanded solvents. U. S, Patent Application, 20090118498

    Google Scholar 

  112. Del Moral D, Osuna AMB, Cordoba A, Moreto JM, Veciana J, Ricart S, Ventosa N (2009) Versatile chemoselectivity in Ni-catalyzed multiple bond carbonylations and cyclocarbonylations in CO2-expanded liquids. Chem Commun 31:4723–4725

    Article  CAS  Google Scholar 

  113. Zwolak G, Jayasinghe NS, Lucien FP (2006) Catalytic chain transfer polymerisation of CO2-expanded methyl methacrylate. J Supercrit Fluids 38:420–426

    Article  CAS  Google Scholar 

  114. Wyatt VT, Haas MJ (2009) Production of fatty acid methyl esters via the in situ transesterification of soybean oil in carbon dioxide-expanded methanol. J Am Oil Chem Soc 86:1009–1016

    Article  CAS  Google Scholar 

  115. George J, Patel Y, Pillai SM, Munshi P (2009) Methanol assisted selective formation of 1, 2-glycerol carbonate from glycerol and carbon dioxide using (Bu2SnO)-Bu-n as a catalyst. J Mol Catal A Chem 304:1–7

    Article  CAS  Google Scholar 

  116. Baiker A (1999) Supercritical fluids in heterogeneous catalysis. Chem Rev 99:453–474

    Article  CAS  Google Scholar 

  117. Grunwaldt JD, Wandeler R, Baiker A (2003) Supercritical fluids in catalysis: opportunities of in situ spectroscopic studies and monitoring phase behavior. Catal Rev Sci Eng 45:1–96

    Article  CAS  Google Scholar 

  118. Beckman EJ (2004) Supercritical and near-critical CO2 in green chemical synthesis and processing. J Supercrit Fluids 28:121–191

    Article  CAS  Google Scholar 

  119. Devetta L, Giovanzana A, Canu P, Bertucco A, Minder B (1999) Kinetic experiments and modeling of a three-phase catalytic hydrogenation reaction in supercritical CO2. Catal Today 48:337–345

    Article  CAS  Google Scholar 

  120. Chouchi D, Gourgouillon D, Courel M, Vital J, Nunes da Ponte M (2001) The influence of phase behavior on reactions at supercritical conditions: the hydrogenation of α-pinene. Ind Eng Chem Res 40:2551–2554

    Article  CAS  Google Scholar 

  121. Xu D, Carbonell RG, Kiserow DJ, Roberts GW (2005) Hydrogenation of polystyrene in CO2-expanded solvents: catalyst poisoning. Ind Eng Chem Res 44:6164–6170

    Article  CAS  Google Scholar 

  122. Chan JC, Tan CS (2006) Hydrogenation of tetralin over Pt/γ-Al2O3 in trickle-bed reactor in the presence of compressed CO2. Energy Fuels 20:771–777

    Article  CAS  Google Scholar 

  123. Phiong H-S, Cooper CG, Adesina AA, Lucien FP (2008) Kinetic modelling of the catalytic hydrogenation of CO2-expanded alpha-methylstyrene. J Supercrit Fluids 46:40–46

    Article  CAS  Google Scholar 

  124. Xie X, Liotta CL, Eckert CA (2004) CO2-protected amine formation from nitrile and imine hydrogenation in gas-expanded liquids. Ind Eng Chem Res 43:7907–7911

    Article  CAS  Google Scholar 

  125. Jenzer G, Schneider MS, Wandeler R, Mallat T, Baiker A (2001) Palladium-catalyzed oxidation of octyl alcohols in “supercritical” carbon dioxide. J Catal 199:141–148

    Article  CAS  Google Scholar 

  126. Kerler B, Robinson RE, Borovik AS, Subramaniam B (2004) Application of CO2-expanded solvents in heterogeneous catalysis: a case study. Appl Catal B 49:91–98

    Article  CAS  Google Scholar 

  127. Sharma S, Kerler B, Subramaniam B, Borovik AS (2006) Immobilized metal complexes in porous hosts: catalytic oxidation of substituted phenols in CO2 media. Green Chem 8:972–977

    Article  CAS  Google Scholar 

  128. Stobrawe A, Makarczyk P, Maillet C, Muller JL, Leitner W (2008) Solid-phase organic synthesis in the presence of compressed carbon dioxide. Angew Chem Int Ed 47:6674–6677

    Article  CAS  Google Scholar 

  129. Sarsani VSR, Lyon CJ, Hutchenson KW, Harmer MA, Subramaniam B (2007) Continuous acylation of anisole by acetic anhydride in mesoporous solid acid catalysts: reaction media effects on catalyst deactivation. J Catal 245:184–190

    Article  CAS  Google Scholar 

  130. Chateauneuf JE, Nie K (2000) An investigation of a Friedel-Crafts alkylation reaction in homogeneous supercritical CO2 and under subcritical and splitphase reaction conditions. Adv Environ Res 4:307–312

    Article  Google Scholar 

  131. Garton RD, Ritchie JT, Caers RE (2003) Oxo process. PCT International Application, WO 2003/082789 A2

    Google Scholar 

  132. Bhanage BM, Divekar SS, Deshpande RM, Chaudhari RV (1997) Kinetics of hydroformylation of 1-dodecene using homogeneous HRh(CO)(PPh3)3 catalyst. J Mol Catal A Chem 115:247–257

    Article  CAS  Google Scholar 

  133. Purwanto P, Deshpande RM, Delmas H, Chaudhari RV (1996) Solubility of hydrogen, carbon monoxide, and 1-octene in various solvents and solvent mixtures. J Chem Eng Data 41:1414–1417

    Article  CAS  Google Scholar 

  134. Guha D, Jin H, Dudukovic MP, Ramachandran PA, Subramaniam B (2007) Mass transfer effects during homogeneous 1-octene hydroformylation in CO2-expanded solvent: modeling and experiments. Chem Eng Sci 62:4967–4975

    Article  CAS  Google Scholar 

  135. Fang J, Jin H, Ruddy T, Pennybaker K, Fahey D, Subramaniam B (2007) Economic and environmental impact analyses of catalytic olefin hydroformylation in CO2-expanded liquid (CXL) media. Ind Eng Chem Res 46:8687–8692

    Article  CAS  Google Scholar 

  136. Jana R, Tunge JA (2009) A homogeneous, recyclable rhodium(I) catalyst for the hydroarylation of Michael acceptors. Org Lett 11:971–974

    Article  CAS  Google Scholar 

  137. Wang R, Cai F, Jin H, Xie Z, Subramaniam B, Tunge JA (2009) Hydroformylation in CO2-expanded media. In: Hutchenson KW, Scurto AM, Subramaniam B (eds) Gas-expanded liquids and near-critical media: green chemistry and engineering, vol 1006, ACS symposium series. American Chemical Society, Washington, DC, pp 202–217

    Chapter  Google Scholar 

  138. Fang J, Jana R, Tunge JA, Subramaniam B (2011) Continuous homogeneous hydroformylation with bulky rhodium catalyst complexes retained by nano-filtration membranes. Appl Catal A: Gen 393:294–301

    Article  CAS  Google Scholar 

  139. Subramaniam B, Tunge JA, Jin H, Ghosh A (2008) Tuning product selectivity in catalytic hydroformylation reactions with CO2-expanded liquids. US Patent 7.365,234, 29 Apr 2008

    Google Scholar 

  140. Horstmann S, Grybat A, Kato R (2004) Experimental determination and prediction of gas solubility data for oxygen in acetonitrile. J Chem Thermodyn 36:1015–1018

    Article  CAS  Google Scholar 

Books and Reviews

  • Anastas P, Eghbali N (2010) Green chemistry: principles and practice. Chem Soc Rev 39:301–312

    Article  CAS  Google Scholar 

  • McHugh MA, Krukonis VJ (1994) Supercritical fluid extraction: principles & practice. Butterworth-Heinemann, Boston

    Google Scholar 

  • Muldoon MJ (2010) Modern multiphase catalysis: new developments in the separation of homogeneous catalysts. Dalton Trans 39:337–348

    Article  CAS  Google Scholar 

  • Olivier-Bourbigou H, Magna L, Morvan D (2010) Ionic liquids and catalysis: recent progress from knowledge to applications. Appl Cat A 373:1–56

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Much of the author’s work described in this entry was made possible by NSF ERC Grant EEC-0310689, the Kansas Technology Enterprise Corporation, and the support of the University of Kansas through the Dan F. Servey Distinguished Professorship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bala Subramaniam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Cite this entry

Subramaniam, B. (2012). Gas Expanded Liquids for Sustainable Catalysis . In: Meyers, R.A. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0851-3_328

Download citation

Publish with us

Policies and ethics