Encyclopedia of Sustainability Science and Technology

2012 Edition
| Editors: Robert A. Meyers

Gas Expanded Liquids for Sustainable Catalysis

  • Bala Subramaniam
Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-0851-3_328

Definition of the Subject

The modern-day chemical industry relies mostly on fossil fuel (such as petroleum, natural gas, and coal)–based feedstock. There are several megaton industrial catalytic processes that produce essential commodities for everyday life but present challenges with respect to reducing environmental footprints and enhancing sustainability. Examples of such processes include the homogeneous hydroformylation of higher olefins, the selective oxidation of light olefins to their corresponding epoxides, and the oxidation of p-xylene to produce terephthalic acid . For a targeted product, there are several possible scenarios for developing sustainable alternatives to conventional technologies. These include (a) developing greener process technologies based on existing feedstock, (b) replacement of fossil fuel–based feedstock with renewable ones such as those derived from biomass (which will also entail the development of new chemistries and process technologies), or (c)...

This is a preview of subscription content, log in to check access.



Much of the author’s work described in this entry was made possible by NSF ERC Grant EEC-0310689, the Kansas Technology Enterprise Corporation, and the support of the University of Kansas through the Dan F. Servey Distinguished Professorship.


Primary Literature

  1. 1.
    Jessop PG, Subramaniam B (2007) Gas-expanded liquids. Chem Rev 107:2666–2694CrossRefGoogle Scholar
  2. 2.
    Lopez-Castillo ZK, Aki SNVK, Stadtherr MA, Brennecke JF (2006) Enhanced solubility of oxygen and carbon monoxide in CO2-expanded liquids. Ind Eng Chem Res 45:5351–5360CrossRefGoogle Scholar
  3. 3.
    Lopez-Castillo ZK, Aki SNVK, Stadtherr MA, Brennecke JF (2008) Enhanced solubility of hydrogen in CO2-expanded liquids. Ind Eng Chem Res 47:570–576CrossRefGoogle Scholar
  4. 4.
    Zevnik L, Levec J (2007) Hydrogen solubility in CO2-expanded 2-propanol and in propane-expanded 2-propanol determined by an acoustic sensor. J Supercrit Fluids 41:335–342CrossRefGoogle Scholar
  5. 5.
    Xie Z, Snavely WK, Scurto AM, Subramaniam B (2009) Solubilities of CO and H2 in neat and CO2-expanded hydroformylation reaction mixtures containing 1-octene and nonanal up to 353 K and 9 Mpa. J Chem Eng Data 54:1633–1642CrossRefGoogle Scholar
  6. 6.
    Sheldon RA (1994) Consider the environmental quotient. Chem Tech 24:38–47Google Scholar
  7. 7.
    Sheldon RA, Arends IWCE, Hanefeld U (2007) Green chemistry and catalysis. Wiley, WeinheimCrossRefGoogle Scholar
  8. 8.
    Tundo AP, Black DS, Breen J, Collins T, Memoli S, Miyamoto J, Poliakoff M, Tumas W (2000) Synthetic pathways and processes in green chemistry: introductory overview. Pure Appl Chem 72:1207–1228CrossRefGoogle Scholar
  9. 9.
    DeSimone JM (2002) Practical approaches to green solvents. Science 297:799–803CrossRefGoogle Scholar
  10. 10.
    Adams DJ, Dyson PJ, Tavener SJ (2004) Chemistry in alternative reaction media. Wiley, ChichesterGoogle Scholar
  11. 11.
    Eckert CA, Liotta CL, Bush B, Brown JS, Hallett JP (2004) Sustainable reactions in tunable solvents. J Phys Chem B 108:18108–18118CrossRefGoogle Scholar
  12. 12.
    Seki T, Baiker A (2009) Catalytic oxidations in dense carbon dioxide. Chem Rev 109:2409–2454CrossRefGoogle Scholar
  13. 13.
    Morgenstern DA, LeLacheur RM, Morita DK, Borkowsky SL, Feng S, Brown GH, Luan L, Gross MF, Burk MJ, Tumas W (1996) Supercritical carbon dioxide as a substitute solvent for chemical synthesis and catalysis. In: Anastas PT, Williamson TC (eds) Green chemistry: designing chemistry for the environment, ACS symposium series vol 626. American Chemical Society, Washington, DC, pp 132–151CrossRefGoogle Scholar
  14. 14.
    Jessop PG, Leitner W (1999) Chemical synthesis using supercritical fluids. Wiley, WeinheimCrossRefGoogle Scholar
  15. 15.
    Amandi R, Hyde J, Poliakoff M (2003) Heterogeneous reactions in supercritical carbon dioxide. In: Aresta M (ed) Carbon dioxide recovery and utilization. Kluwer, Dordrecht, pp 169–180Google Scholar
  16. 16.
    DeSimone JM, Tumas W (2003) Green chemistry using liquid and supercritical carbon dioxide. Oxford University Press, New YorkGoogle Scholar
  17. 17.
    Gordon CM, Leitner W (2004) Supercritical fluids as replacements for conventional organic solvents. Chim Oggi 22:39–41Google Scholar
  18. 18.
    Beckman EJ (2002) Using CO2 to produce chemical products sustainably. Environ Sci Technol 36:347A–353ACrossRefGoogle Scholar
  19. 19.
    Licence P, Poliakoff M (2005) Economics and scale-up. In: Cornils B, Hermann WA, Horváth IT, Leitner W, Mecking S, Olivier-Bourbigou H, Vogt D (eds) Multiphase homogeneous catalysis, vol 2. Wiley, Weinheim, pp 734–746Google Scholar
  20. 20.
    Arai M, Fujita SI, Shirai M (2009) Multiphase catalytic reaction in/under dense phase CO2. J Supercrit Fluids 47:351–356CrossRefGoogle Scholar
  21. 21.
    Li CJ, Chan TH (1997) Organic reactions in aqueous media. Wiley, New YorkGoogle Scholar
  22. 22.
    Cornils B, Herrmann WA (1998) Aqueous-phase organometallic catalysis. Wiley, WeinheimGoogle Scholar
  23. 23.
    Savage PE (2009) A perspective on catalysis in sub- and supercritical water. J Supercrit Fluids 47:407–414CrossRefGoogle Scholar
  24. 24.
    Musie G, Wei M, Subramaniam B, Busch DH (2001) Catalytic oxidations in carbon dioxide-based reaction media, including novel CO2-expanded phases. Coord Chem Rev 219–221:789–820CrossRefGoogle Scholar
  25. 25.
    Hutchenson KW, Scurto AM, Subramaniam B (2009) Gas-expanded liquids and near-critical media: green chemistry and engineering, vol 1006, ACS symposium series. American Chemical Society, Washington, DCCrossRefGoogle Scholar
  26. 26.
    Akien GR, Poliakoff M (2009) A critical look at reactions in class I and II gas-expanded liquids using CO2 and other gases. Green Chem 11:1083–1100CrossRefGoogle Scholar
  27. 27.
    Scurto AM, Hutchenson KW, Subramaniam B (2009) Gas-expanded liquids (GXLs): fundamentals and applications. In: Hutchenson KW, Scurto AM, Subramaniam B (eds) Gas-expanded liquids and near-critical media: green chemistry and engineering, vol 1006, ACS symposium series. American Chemical Society, Washington, DC, pp 3–37CrossRefGoogle Scholar
  28. 28.
    Wasserscheid P, Welton T (2002) Ionic liquids in synthesis. Wiley, WeinheimCrossRefGoogle Scholar
  29. 29.
    Rogers RD, Seddon KR, Volkov S (2003) Green industrial applications of ionic liquids. Kluwer, DordrechtCrossRefGoogle Scholar
  30. 30.
    Pârvulescu VI, Hardacre C (2007) Catalysis in ionic liquids. Chem Rev 107:2615–2665CrossRefGoogle Scholar
  31. 31.
    Jessop PG, Heldebrant DJ, Xiaowang L, Eckert CA, Liotta CL (2005) Reversible nonpolar-to-polar solvent. Nature 436:1102CrossRefGoogle Scholar
  32. 32.
    Liu Y, Jessop PG, Cunningham M, Eckert CA (2006) Liotta CL, switchable sufactants. Science 313:958–960CrossRefGoogle Scholar
  33. 33.
    Phan CD, Heldebrant DJ, Huttenhower H, John E, Li X, Pollet P, Wang R, Eckert CA, Liotta CL, Jessop PG (2008) Switchable solvents consisting of amidine/alcohol or guanidine/alcohol mixtures. Ind Eng Chem Res 47:539–545CrossRefGoogle Scholar
  34. 34.
    Phan L, Brown H, White J, Hodgson A, Jessop PG (2009) Soybean oil extraction and separation using switchable or expanded solvents. Green Chem 11:53–59CrossRefGoogle Scholar
  35. 35.
    Phan L, Jessop PG (2009) Switching the hydrophilicity of a solute. Green Chem 11:307–308CrossRefGoogle Scholar
  36. 36.
    Ahosseini A, Ren W, Scurto AM (2009) Understanding biphasic ionic liquid/CO2 systems for homogeneous catalysis: hydroformylation. Ind Eng Chem Res 48:4254–4265CrossRefGoogle Scholar
  37. 37.
    Anastas P, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, New YorkGoogle Scholar
  38. 38.
    Anastas PT, Zimmerman JB (2003) Design through the 12 principles of green engineering. J Environ Sci Technol 37:95A–101AGoogle Scholar
  39. 39.
    Allen DT, Shonnard DR (2001) Green engineering: environmentally conscious design of chemical processes. Prentice Hall, New YorkGoogle Scholar
  40. 40.
    Dudukovic MP (2009) Frontiers in reactor engineering. Science 325:698–701CrossRefGoogle Scholar
  41. 41.
    Kordikowski A, Schenk AP, Van Nielen RM, Peters CJ (1995) Volume expansions and vapor-liquid equilibria of binary mixtures of a variety of polar solvents and certain near-critical solvents. J Supercrit Fluids 8:205–216CrossRefGoogle Scholar
  42. 42.
    Ren W, Scurto AM (2007) High-Pressure phase equilibria with compressed gases. Rev Sci Instrum 78:125104–125107CrossRefGoogle Scholar
  43. 43.
    Heldebrant DJ, Witt H, Walsh S, Ellis T, Rauscher J, Jessop PG (2006) Liquid polymers as solvents for catalytic reductions. Green Chem 8:807–815CrossRefGoogle Scholar
  44. 44.
    Ren W, Sensenich B, Scurto AM (2010) High-pressure phase equilibria of carbon dioxide (CO2) + n-alkyl-imidazolium bis(trifluoromethylsulfonyl)amide ionic liquids. J Chem Thermodyn 42:305–311CrossRefGoogle Scholar
  45. 45.
    Rajagopalan B, Wie M, Musie GT, Subramaniam B, Busch DH (2003) Homogeneous catalytic epoxidation of organic substrates in CO2-expanded solvents in the presence of water soluble oxidants and catalysts. Ind Eng Chem Res 42:6505–6510CrossRefGoogle Scholar
  46. 46.
    Ohgaki K, Takata H, Washida T, Katayama T (1988) Phase equilibria of four binary systems containing propylene. Fluid Phase Equilibr 43:105–113CrossRefGoogle Scholar
  47. 47.
    Peng DB, Robinson DT (1976) A new two-constant equation of state. Ind Eng Chem Fund 15:59–64CrossRefGoogle Scholar
  48. 48.
    Houndonougbo Y, Jin H, Rajagopalan B, Wong K, Kuczera K, Subramaniam B, Laird BB (2006) Phase equilibria in carbon dioxide-expanded solvents: experiment and molecular simulations. J Phys Chem B 110:13195–13202CrossRefGoogle Scholar
  49. 49.
    Swalina C, Arzhantsev S, Li HP, Maroncelli M (2008) Solvation and solvatochromism in CO2-expanded liquids. 3. the dynamics of nonspecific preferential solvation. J Phys Chem B 112:14959–14970CrossRefGoogle Scholar
  50. 50.
    Subramaniam B (2010) Gas-expanded liquids for sustainable catalysis and novel materials. Coord Chem Rev 254:1843–1853CrossRefGoogle Scholar
  51. 51.
    Sih R, Dehghani F, Foster NR (2007) Viscosity measurements on gas expanded liquid systems-methanol and carbon dioxide. J Supercrit Fluids 41:148–157CrossRefGoogle Scholar
  52. 52.
    Kelkar MS, Maginn EJ (2007) Effect of temperature and water content on the shear viscosity of the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide as studied by atomistic simulations. J Phys Chem B 111:4867–4876CrossRefGoogle Scholar
  53. 53.
    Ahosseini A, Ortega E, Sensenich B, Scurto AM (2009) Viscosity of n-alkyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)amide ionic liquids saturated with compressed CO2. Fluid Phase Equilibr 286:62–68CrossRefGoogle Scholar
  54. 54.
    Maxey NB (2006) Transport and phase-transfer catalysis in gas-expanded liquids. PhD Dissertation, Georgia Institute of Technology, AtlantaGoogle Scholar
  55. 55.
    Lin IH, Tan CS (2008) Diffusion of benzonitrile in CO2-expanded ethanol. J Chem Eng Data 53:1886–1891CrossRefGoogle Scholar
  56. 56.
    Roškar V, Dombro RA, Prentice GA, Westgate CR, McHugh MA (1992) Comparison of the dielectric behavior of mixtures of methanol with carbon dioxide and ethane in the mixture-critical and liquid regions. Fluid Phase Equilibr 77:241–259CrossRefGoogle Scholar
  57. 57.
    Wyatt VT, Bush D, Lu J, Hallett JP, Liotta CL, Eckert CA (2005) Determination of solvatochromic solvent parameters for the characterization of gas-expanded liquids. J Supercrit Fluids 36:16–22CrossRefGoogle Scholar
  58. 58.
    Abbott AP, Hope EG, Mistry R, Stuart AM (2009) Probing the structure of gas expanded liquids using relative permittivity, density and polarity measurements. Green Chem 11:1530–1535CrossRefGoogle Scholar
  59. 59.
    Ford JW, Janakat ME, Liu J, Liotta CL, Eckert CA (2008) Local polarity in CO2-expanded acetonitrile: A nucleophilic substitution reaction and solvatochromic probes. J Org Chem 73:3364–3368CrossRefGoogle Scholar
  60. 60.
    Seki TJ, Grunwaldt JD, Baiker A (2009) In situ attenuated total reflection infrared spectroscopy of imidazolium-based room-temperature ionic liquids under “supercritical” CO2. J Phys Chem B 113:114–122CrossRefGoogle Scholar
  61. 61.
    Burgi T, Baiker A (2006) Attenuated total reflection infrared spectroscopy of solid catalysts functioning in the presence of liquid-phase reactants. Adv Catal 50:227–283CrossRefGoogle Scholar
  62. 62.
    Guha D, Jin H, Dudukovic MP, Ramachandran PA, Subramaniam B (2007) Mass transfer effects during homogeneous 1-octene hydroformylation in CO2-expanded solvent: modeling and experiments. Chem Eng Sci 62:4967–4975CrossRefGoogle Scholar
  63. 63.
    Lyon CJ, Subramaniam B, Pereira CJ (2001) Enhanced isooctane yields for 1-butene/Isobutane alkylation on SiO2-supported Nafion® in supercritical carbon dioxide. In: Spivey JJ, Roberts GW, Davis BH (eds) Catalyst deactivation 2001. Studies in surface science and catalysis, vol 139. Elsevier, Amsterdam, pp 221–228Google Scholar
  64. 64.
    (a) Webb PB, Kunene TE, Cole-Hamilton DJ (2005) Continuous flow homogeneous hydroformylation of alkenes using supercritical fluids. Green Chem 7:373–379; (b) Sellin MF, Webb PB, Cole-Hamilton DJ (2001) Chem Commun 781Google Scholar
  65. 65.
    Thomas CA, Bonilla RJ, Huang Y, Jessop PG (2001) Hydrogenation of carbon dioxide catalysed by ruthenium trimethylphosphine complexes: effect of gas pressure and additives on rate in the liquid phase. Can J Chem 79:719–724Google Scholar
  66. 66.
    Combes GB, Dehghani F, Lucien FP, Dillow AK, Foster NR (2000) Asymmetric catalytic hydrogenation in CO2 expanded methanol-an application of gas anti-solvent reaction (GASR). In: Abraham MA, Hesketh RP (eds) Reaction engineering for pollution prevention. Elsevier, Amsterdam, pp 173–181CrossRefGoogle Scholar
  67. 67.
    Combes G, Coen E, Dehghani F, Foster NR (2005) Dense CO2 expanded methanol solvent system for synthesis of naproxen via enantioselective hydrogenation. J Supercrit Fluids 36:127–136CrossRefGoogle Scholar
  68. 68.
    Floris T, Kluson P, Muldoon MJ, Pelantova H (2010) Notes on the asymmetric hydrogenation of methyl acetoacetate in neoteric solvents. Cat Lett 134:279–287CrossRefGoogle Scholar
  69. 69.
    Solinas M, Pfaltz A, Cozzi P, Leitner W (2004) Enantioselective hydrogenation of imines in ionic liquid/carbon dioxide media. J Am Chem Soc 126:16142–16147CrossRefGoogle Scholar
  70. 70.
    Jessop PG, Stanley R, Brown RA, Eckert CA, Liotta CL, Ngo TT, Pollet P (2003) Neoteric solvents for asymmetric hydrogenation: supercritical fluids, ionic liquids, and expanded ionic liquids. Green Chem 5:123–128CrossRefGoogle Scholar
  71. 71.
    Jessop PG, DeHaai S, Wynne DC, Nakawatase D (2000) Carbon dioxide gas accelerates solventless synthesis. Chem Commun 8:693–694CrossRefGoogle Scholar
  72. 72.
    Scurto AM, Leitner W (2006) Melting point depression of organic ionic solids/liquids with carbon dioxide for enhanced catalytic processes. Chem Commun 3681–3683Google Scholar
  73. 73.
    Ahosseini A, Ren W, Scurto AM (2009) Hydrogenation in biphasic ionic liquid/CO2 systems. In: Hutchenson KW, Scurto AM, Subramaniam B (eds) Gas expanded liquids and near-critical media: green chemistry and engineering, vol 1006, ACS symposium series. American Chemical Society, Washington, DC, pp 218–234CrossRefGoogle Scholar
  74. 74.
    Jin H, Subramaniam B (2004) Catalytic hydroformylation of 1-octene in CO2-expanded solvent media. Chem Eng Sci 59:4887–4893CrossRefGoogle Scholar
  75. 75.
    Jin H, Subramaniam B, Ghosh A, Tunge J (2006) Intensification of catalytic olefin hydroformylation in CO2-expanded media. AIChE J 52:2575–2591CrossRefGoogle Scholar
  76. 76.
    Koeken ACJ, Benes NE, van den Broeke LJP, Keurentjes JTF (2009) Efficient hydroformylation in dense carbon dioxide using phosphorus ligands without perfluoroalkyl substituents. Adv Syn Catal 351:1142–1450CrossRefGoogle Scholar
  77. 77.
    Hemminger O, Marteel A, Mason MR, Davies JA, Tadd AR, Abraham MA (2002) Hydroformylation of 1-hexene in supercritical carbon dioxide using a heterogeneous rhodium catalyst. 3. Evaluation of solvent effects. Green Chem 4:507–512CrossRefGoogle Scholar
  78. 78.
    Webb PB, Sellin MF, Kunene TE, Williamson S, Slawin AMZ, Cole-Hamilton DJ (2003) Continuous flow hydroformylation of alkenes in supercritical fluid-ionic liquid biphasic systems. J Am Chem Soc 125:15577–15588CrossRefGoogle Scholar
  79. 79.
    Frisch AC, Webb PB, Zhao G, Muldoon MJ, Pogorzelec PJ, Cole-Hamilton DJ (2007) Solventless continuous flow homogeneous hydroformylation of 1-octene. Dalton Trans 47:5531–5538CrossRefGoogle Scholar
  80. 80.
    Wei M, Musie GT, Busch DH, Subramaniam B (2002) CO2-expanded solvents: unique and versatile media for performing homogeneous catalytic oxidations. J Am Chem Soc 124:2513–2517CrossRefGoogle Scholar
  81. 81.
    Wei M, Musie GT, Busch DH, Subramaniam B (2004) Autoxidation of 2,6-di-tertbutylphenol with cobalt Schiff base catalysts by oxygen in CO2-expanded liquids. Green Chem 6:387–393CrossRefGoogle Scholar
  82. 82.
    Zuo X, Niu F, Snavely WK, Subramaniam B, Busch DH (2010) Liquid phase oxidation of p-xylene to terephthalic acid at medium-high temperatures: multiple benefits of CO2-expanded liquids. Green Chem 12:260–267CrossRefGoogle Scholar
  83. 83.
    Trent DT (1996) Propylene oxide Kirk-Othmer encyclopedia of chemical technology, vol 20, 4th edn. Wiley, New York, pp 271–302Google Scholar
  84. 84.
    Thiele GF, Roland E (1997) Propylene epoxidation with hydrogen peroxide and titanium silicalite catalyst: activity, deactivation and regeneration of the catalyst. J Mol Catal A Chem 117:351–356CrossRefGoogle Scholar
  85. 85.
    Danciu T, Beckman EJ, Hancu D, Cochran RN, Grey R, Hajnik DM, Jewson J (2002) Direct synthesis of propylene oxide with CO2 as the solvent. Angew Chem Int Ed 42:1140–1142CrossRefGoogle Scholar
  86. 86.
    Laufer W, Meiers R, Holderich W (1999) Propylene epoxidation with hydrogen peroxide over palladium containing titanium silicalite. J Mol Catal A Chem 141:215–221CrossRefGoogle Scholar
  87. 87.
    Jenzer G, Mallat T, Maciejewski M, Eigenmann F, Baiker A (2001) Continuous epoxidation of propylene with oxygen and hydrogen on a Pd-Pt/TS-1 catalyst. Appl Catal A 208:125–133CrossRefGoogle Scholar
  88. 88.
    Nolen SA, Lu J, Brown JS, Pollet P, Eason BC, Griffith KN, Glaser R, Bush D, Lamb DR, Liotta CL, Eckert CA, Thiele GF, Bartels KA (2002) Olefin epoxidations using supercritical carbon dioxide and hydrogen peroxide without added metallic catalysts or peroxy ccids. Ind Eng Chem Res 41:316–323CrossRefGoogle Scholar
  89. 89.
    Hancu D, Green H, Beckman EJ (2002) H2O2 in CO2/H2O biphasic systems: green synthesis and epoxidation reactions. Ind Eng Chem Res 41:4466–4474CrossRefGoogle Scholar
  90. 90.
    Zha YJ, Zhang JL, Han BX, Hu SQ, Li W (2010) CO2-controlled reactors: epoxidation in emulsions with droplet size from micron to nanometre scale. Green Chem 12:452–457CrossRefGoogle Scholar
  91. 91.
    Herrmann WA, Fischer RW, Marz DW (1991) Methyltrioxorhenium as catalyst for olefin metathesis. Angew Chem Int Ed Engl 30:1636–1638CrossRefGoogle Scholar
  92. 92.
    Rudolph J, Reddy KL, Chiang JP, Sharpless KB (1997) Highly efficient epoxidation of olefins using aqueous H2O2 and catalytic methyltrioxorhenium/pyridine: pyridine-mediated ligand acceleration. J Am Chem Soc 119:6189–6190CrossRefGoogle Scholar
  93. 93.
    Wang WD, Espenson JH (1998) Effects of pyridine and its derivatives on the equilibria and kinetics pertaining to epoxidation reactions catalyzed by methyltrioxorhenium. J Am Chem Soc 120:11335–11341CrossRefGoogle Scholar
  94. 94.
    Yin G, Busch DH (2009) Mechanistic details to facilitate applications of an exceptional catalyst, methyltrioxorhenium: encouraging results from oxygen-18 isotopic probes. Catal Lett 130:52–55CrossRefGoogle Scholar
  95. 95.
    Lee HJ, Shi TP, Busch DH, Subramaniam B (2007) A greener, pressure intensified propylene epoxidation process with facile product separation. Chem Eng Sci 62:7282–7289CrossRefGoogle Scholar
  96. 96.
    Lee HJ, Ghanta M, Busch DH, Subramaniam B (2010) Towards a CO2-free ethylene oxide process: homogeneous ethylene epoxidation in gas-expanded liquids. Chem Eng Sci 65:128–134CrossRefGoogle Scholar
  97. 97.
    Azarnoosh A, Mcketta JJ (1959) Solubility of propylene in water. J Chem Eng Data 4:211–212CrossRefGoogle Scholar
  98. 98.
    Yorizane M, Sadamoto S, Yoshimura S (1968) Low-temperature vapor-liquid equilibriums. Nitrogen-propylene and carbon dioxide-methane systems. Kagaku Kogaku Ronbun 32:257–264CrossRefGoogle Scholar
  99. 99.
    Lee HJ, Shi TP, Subramaniam B, Busch DH (2006) Selective oxidation of propylene to propylene oxide in CO2 expanded liquid system. In: Schmidt SR (ed) Catalysis of organic reactions. CRC Press, Boca Raton, pp 447–451Google Scholar
  100. 100.
    Weissermel K (2003) Industrial organic chemistry, 4th edn. Wiley, Weinheim, pp 145–153CrossRefGoogle Scholar
  101. 101.
    Haneda A, Seki T, Kodama D, Kato M (2006) High-pressure phase equilibrium for ethylene + methanol at 278.15 K and 283.65 K. J Chem Eng Data 51:268–271CrossRefGoogle Scholar
  102. 102.
    West KN, Wheeler C, McCarney JP, Griffith KN, Bush D, Liotta CL, Eckert CA (2001) In situ formation of alkylcarbonic acids with CO2. J Phys Chem A 105:3947–3948CrossRefGoogle Scholar
  103. 103.
    Chamblee TS, Weikel RR, Nolen SA, Liotta CL, Eckert CA (2004) Reversible in situ acid formation for -pinene hydrolysis using CO2 expanded liquid and hot water. Green Chem 6:382–386CrossRefGoogle Scholar
  104. 104.
    Gohres JL, Marin AT, Lu J, Liotta CL, Eckert CA (2009) Spectroscopic investigation of alkylcarbonic acid formation and dissociation in CO2-expanded alcohols. Ind Eng Chem Res 48:1302–1306CrossRefGoogle Scholar
  105. 105.
    Alemán PA, Boix C, Poliakoff M (1999) Hydrolysis and saponification of methyl benzoates. Green Chem 1:65–68CrossRefGoogle Scholar
  106. 106.
    Hunter SE, Savage PE (2004) Recent advances in acid- and base-catalyzed organic synthesis in high-temperature liquid water. Chem Eng Sci 59:4903–4909CrossRefGoogle Scholar
  107. 107.
    Throckmorton PE, Hansen LI, Christensen RC, Pryde EH (1968) Laboratory optimization of process variables in reductive ozonolysis of methyl soyate. J Am Oil Chem Soc 45:59–62CrossRefGoogle Scholar
  108. 108.
    Nickell EC, Albi M, Privett OS (1976) Ozonization products of unsaturated fatty acid methyl esters. Chem Phys Lipids 17:378–388CrossRefGoogle Scholar
  109. 109.
    Nishikawa N, Yamada K, Matsutani S, Higo M, Kigawa H, Inagaki T (1995) Structires of ozonolysis products of methyl oleate obtained in a carboxylic acid medium. J Am Oil Chem Soc 72:735–740CrossRefGoogle Scholar
  110. 110.
    O’Brien M, Baxendale IR, Ley SV (2010) Flow ozonolysis using a semipermeable Teflon AF-2400 membrane to effect gas-liquid contact. Org Lett 12:1596–1598CrossRefGoogle Scholar
  111. 111.
    Subramaniam B, Busch DH, Danby A, Binder TP (2008) Ozonoysis reactions in liquid CO2 and CO2-expanded solvents. U. S, Patent Application, 20090118498Google Scholar
  112. 112.
    Del Moral D, Osuna AMB, Cordoba A, Moreto JM, Veciana J, Ricart S, Ventosa N (2009) Versatile chemoselectivity in Ni-catalyzed multiple bond carbonylations and cyclocarbonylations in CO2-expanded liquids. Chem Commun 31:4723–4725CrossRefGoogle Scholar
  113. 113.
    Zwolak G, Jayasinghe NS, Lucien FP (2006) Catalytic chain transfer polymerisation of CO2-expanded methyl methacrylate. J Supercrit Fluids 38:420–426CrossRefGoogle Scholar
  114. 114.
    Wyatt VT, Haas MJ (2009) Production of fatty acid methyl esters via the in situ transesterification of soybean oil in carbon dioxide-expanded methanol. J Am Oil Chem Soc 86:1009–1016CrossRefGoogle Scholar
  115. 115.
    George J, Patel Y, Pillai SM, Munshi P (2009) Methanol assisted selective formation of 1, 2-glycerol carbonate from glycerol and carbon dioxide using (Bu2SnO)-Bu-n as a catalyst. J Mol Catal A Chem 304:1–7CrossRefGoogle Scholar
  116. 116.
    Baiker A (1999) Supercritical fluids in heterogeneous catalysis. Chem Rev 99:453–474CrossRefGoogle Scholar
  117. 117.
    Grunwaldt JD, Wandeler R, Baiker A (2003) Supercritical fluids in catalysis: opportunities of in situ spectroscopic studies and monitoring phase behavior. Catal Rev Sci Eng 45:1–96CrossRefGoogle Scholar
  118. 118.
    Beckman EJ (2004) Supercritical and near-critical CO2 in green chemical synthesis and processing. J Supercrit Fluids 28:121–191CrossRefGoogle Scholar
  119. 119.
    Devetta L, Giovanzana A, Canu P, Bertucco A, Minder B (1999) Kinetic experiments and modeling of a three-phase catalytic hydrogenation reaction in supercritical CO2. Catal Today 48:337–345CrossRefGoogle Scholar
  120. 120.
    Chouchi D, Gourgouillon D, Courel M, Vital J, Nunes da Ponte M (2001) The influence of phase behavior on reactions at supercritical conditions: the hydrogenation of α-pinene. Ind Eng Chem Res 40:2551–2554CrossRefGoogle Scholar
  121. 121.
    Xu D, Carbonell RG, Kiserow DJ, Roberts GW (2005) Hydrogenation of polystyrene in CO2-expanded solvents: catalyst poisoning. Ind Eng Chem Res 44:6164–6170CrossRefGoogle Scholar
  122. 122.
    Chan JC, Tan CS (2006) Hydrogenation of tetralin over Pt/γ-Al2O3 in trickle-bed reactor in the presence of compressed CO2. Energy Fuels 20:771–777CrossRefGoogle Scholar
  123. 123.
    Phiong H-S, Cooper CG, Adesina AA, Lucien FP (2008) Kinetic modelling of the catalytic hydrogenation of CO2-expanded alpha-methylstyrene. J Supercrit Fluids 46:40–46CrossRefGoogle Scholar
  124. 124.
    Xie X, Liotta CL, Eckert CA (2004) CO2-protected amine formation from nitrile and imine hydrogenation in gas-expanded liquids. Ind Eng Chem Res 43:7907–7911CrossRefGoogle Scholar
  125. 125.
    Jenzer G, Schneider MS, Wandeler R, Mallat T, Baiker A (2001) Palladium-catalyzed oxidation of octyl alcohols in “supercritical” carbon dioxide. J Catal 199:141–148CrossRefGoogle Scholar
  126. 126.
    Kerler B, Robinson RE, Borovik AS, Subramaniam B (2004) Application of CO2-expanded solvents in heterogeneous catalysis: a case study. Appl Catal B 49:91–98CrossRefGoogle Scholar
  127. 127.
    Sharma S, Kerler B, Subramaniam B, Borovik AS (2006) Immobilized metal complexes in porous hosts: catalytic oxidation of substituted phenols in CO2 media. Green Chem 8:972–977CrossRefGoogle Scholar
  128. 128.
    Stobrawe A, Makarczyk P, Maillet C, Muller JL, Leitner W (2008) Solid-phase organic synthesis in the presence of compressed carbon dioxide. Angew Chem Int Ed 47:6674–6677CrossRefGoogle Scholar
  129. 129.
    Sarsani VSR, Lyon CJ, Hutchenson KW, Harmer MA, Subramaniam B (2007) Continuous acylation of anisole by acetic anhydride in mesoporous solid acid catalysts: reaction media effects on catalyst deactivation. J Catal 245:184–190CrossRefGoogle Scholar
  130. 130.
    Chateauneuf JE, Nie K (2000) An investigation of a Friedel-Crafts alkylation reaction in homogeneous supercritical CO2 and under subcritical and splitphase reaction conditions. Adv Environ Res 4:307–312CrossRefGoogle Scholar
  131. 131.
    Garton RD, Ritchie JT, Caers RE (2003) Oxo process. PCT International Application, WO 2003/082789 A2Google Scholar
  132. 132.
    Bhanage BM, Divekar SS, Deshpande RM, Chaudhari RV (1997) Kinetics of hydroformylation of 1-dodecene using homogeneous HRh(CO)(PPh3)3 catalyst. J Mol Catal A Chem 115:247–257CrossRefGoogle Scholar
  133. 133.
    Purwanto P, Deshpande RM, Delmas H, Chaudhari RV (1996) Solubility of hydrogen, carbon monoxide, and 1-octene in various solvents and solvent mixtures. J Chem Eng Data 41:1414–1417CrossRefGoogle Scholar
  134. 134.
    Guha D, Jin H, Dudukovic MP, Ramachandran PA, Subramaniam B (2007) Mass transfer effects during homogeneous 1-octene hydroformylation in CO2-expanded solvent: modeling and experiments. Chem Eng Sci 62:4967–4975CrossRefGoogle Scholar
  135. 135.
    Fang J, Jin H, Ruddy T, Pennybaker K, Fahey D, Subramaniam B (2007) Economic and environmental impact analyses of catalytic olefin hydroformylation in CO2-expanded liquid (CXL) media. Ind Eng Chem Res 46:8687–8692CrossRefGoogle Scholar
  136. 136.
    Jana R, Tunge JA (2009) A homogeneous, recyclable rhodium(I) catalyst for the hydroarylation of Michael acceptors. Org Lett 11:971–974CrossRefGoogle Scholar
  137. 137.
    Wang R, Cai F, Jin H, Xie Z, Subramaniam B, Tunge JA (2009) Hydroformylation in CO2-expanded media. In: Hutchenson KW, Scurto AM, Subramaniam B (eds) Gas-expanded liquids and near-critical media: green chemistry and engineering, vol 1006, ACS symposium series. American Chemical Society, Washington, DC, pp 202–217CrossRefGoogle Scholar
  138. 138.
    Fang J, Jana R, Tunge JA, Subramaniam B (2011) Continuous homogeneous hydroformylation with bulky rhodium catalyst complexes retained by nano-filtration membranes. Appl Catal A: Gen 393:294–301CrossRefGoogle Scholar
  139. 139.
    Subramaniam B, Tunge JA, Jin H, Ghosh A (2008) Tuning product selectivity in catalytic hydroformylation reactions with CO2-expanded liquids. US Patent 7.365,234, 29 Apr 2008Google Scholar
  140. 140.
    Horstmann S, Grybat A, Kato R (2004) Experimental determination and prediction of gas solubility data for oxygen in acetonitrile. J Chem Thermodyn 36:1015–1018CrossRefGoogle Scholar

Books and Reviews

  1. Anastas P, Eghbali N (2010) Green chemistry: principles and practice. Chem Soc Rev 39:301–312CrossRefGoogle Scholar
  2. McHugh MA, Krukonis VJ (1994) Supercritical fluid extraction: principles & practice. Butterworth-Heinemann, BostonGoogle Scholar
  3. Muldoon MJ (2010) Modern multiphase catalysis: new developments in the separation of homogeneous catalysts. Dalton Trans 39:337–348CrossRefGoogle Scholar
  4. Olivier-Bourbigou H, Magna L, Morvan D (2010) Ionic liquids and catalysis: recent progress from knowledge to applications. Appl Cat A 373:1–56CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Chemical and Petroleum EngineeringThe Center for Environmentally Beneficial Catalysis, University of KansasLawrenceUSA