Skip to main content

Uranium in the Environment : Behavior and Toxicity

  • Reference work entry
Encyclopedia of Sustainability Science and Technology

Definition of Subject

Uranium (U) is a primordial radionuclide that is naturally present in the environment at low concentrations. Natural U is mainly a chemical hazard as opposed to a radiological hazard. The chemical speciation of U influences its bioavailability and toxicity . Under anoxic conditions, U is in the tetravalent state forming insoluble compounds and is immobile. Under oxic conditions, U is in the hexavalent state is mobile, bioavailable, and tends to have higher toxicity. Low absorption in the gut and a tendency to decrease in concentration up the food chain makes U toxicity of little concern at typical background concentrations, but at elevated concentration U may be toxic.

Considerable work has investigated the toxicity of U to humans using animal models. This work is applicable to wildlife. In comparison to mammals, little effort has focused on the toxicity of U to terrestrial plants and soil invertebrates. For some aquatic species, U toxicity decreases with an...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 6,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Acute toxicity test:

A toxicity test of short duration in relation to the life span of the test organism (e.g., ∼ 4 days for fish).

Chronic toxicity test:

A toxicity test that spans a significant portion of the life span of the test organism (e.g., 10% or more) and examines effects on such parameters as metabolism, growth, reproduction, and survival.

Concentration ratio (CR):

The ratio of the steady-state concentration of a substance in an organism to the concentration of the substance in filtered water and/or the ratio of the uptake-rate constant to the depuration-rate constant.

Critical toxicity value (CTV):

The quantitative expression of low toxic effect (e.g., EC10) to the measurement endpoint. CTVs are used in risk characterization for the calculation of an Estimated-No-Effect Value (ENEV).

Depleted uranium (DU):

The by-product of uranium enrichment and has a 235U content that is less than that of natural uranium (0.71 wt.%) usually 2 to 4 wt.%.

ECx :

The concentration of a substance in water, soil, or sediment that is estimated to cause a specified toxic effect (e.g., immobilization, reduced growth) on x% (most often 50%) of the test organisms. The duration of the test must be specified. The ECx describes quantal effects, lethal or sublethal, and is not applicable to quantitative effects (see ICx).

Estimated-no-effect value (ENEV):

The concentration of a contaminant that should not have an effect on a sensitive endpoint of ecological relevance such as survival, growth, or reproduction, and is derived by dividing the critical toxicity value by an appropriate application factor.

ICx :

The inhibiting concentration for a substance for a specified x% impairment in a quantitative biological function such as the attained size over a growth period, reproductive performance, or respiration.

LD50 :

The dose that causes mortality in 50% of the organisms tested.

Lowest-observed-effect level (LOEL):

The concentration at which actual ecotoxic effects become apparent, usually the fifth percentile of the screening-level concentration.

No-observed-effect level (NOEL):

The highest dose in a toxicity test not causing a statistically significant effect compared with the controls.

Partition coefficient (Kd):

A measure of the propensity of a particular radionuclide to associate with solid phases defined as the ratio of the concentration of the radionuclide on the particulate fraction to the concentration in water (L·kg−1 dry sediment).

Transfer coefficient (TC):

A ratio of the concentration ratio (unit less) and the rate of intake of the organism (kg·day−1) to predict the fraction of the radionuclide in the diet that is accumulated in the body on a daily basis (day·kg−1).

Bibliography

Primary Literature

  1. Bleise A, Danesi PR, Burkart W (2003) Properties, use and health effects of depleted uranium (DU): a general overview. J Environ Radioact 64:93–112

    Article  CAS  Google Scholar 

  2. Ribera D, Labrot F, Tisnerat G, Narbonne JF (1996) Uranium in the environment: occurrence, transfer, and biological effects. Rev Environ Contam Toxicol 146:53–89

    Article  CAS  Google Scholar 

  3. Meinrath A, Schneider P, Meinrath G (2003) Uranium ores and depleted uranium in the environment, with a reference to uranium in the biosphere from the Erzgebirge/Sachsen, Germany. J Environ Radioact 64:175–193

    Article  CAS  Google Scholar 

  4. Harley NH (1996) Toxic effects of radiation and radioactive materials. In: Klaassen CD (ed) Casarett and Doull’s toxicilogy: the basic science of poisons. McGraw-Hill, New York, pp 773–800

    Google Scholar 

  5. Markich S (2002) Uranium speciation and bioavailability in aquatic systems: an overview. Sci World J 2:707–729

    Article  CAS  Google Scholar 

  6. Environmental Canada, Health Canada (2003) Canadian Environmental Protection Act 1999. Priority substances list assessment report releases of radionuclides from nuclear facilities (Impact on non-human biota). Final Report May 2003

    Google Scholar 

  7. Kalin M, Wheeler WN, Meinrath G (2005) The removal of uranium from mining waste water using algal/microbial biomass. J Radiochem Radioact 78:151–177

    Article  CAS  Google Scholar 

  8. Environment Canada (1983) Guideline for surface water quality volume 1: inorganic chemical substances URANIUM. Inland Waters Directorate, Water Quality Branch, Ottawa

    Google Scholar 

  9. Painter S, Cameron EM, Allan R, Rouse J (1994) Reconnaissance geochemistry and its environmental relevance. J Geochem Explor 51:213–246

    Article  CAS  Google Scholar 

  10. CCME (Canadian Council of Ministers of the Environment) (2007) Canadian soil quality guidelies for uranium: environmental and human health scientific supporting document PN 1371 ISBN 978-1-896997-64-3 PDF

    Google Scholar 

  11. Gascoyne M (1992) Geochemistry of the actinides and their daughters. In: Ivanovich M, Harmon RS (eds) Uranium series disequilibrium: applications to earth, marine and environmental sciences, 2nd edn. Clarendon, Oxford, pp 34–61

    Google Scholar 

  12. Macdonald CR (1998) The chemical toxicity of uranium to wildlife. Report to the Commercial Chemical Division, Environment Canada. Contract Number K2221-7-0076. Pinawa, MB. 32 pp

    Google Scholar 

  13. Ragnarsdottir KV, Charlet L (2000) Uranium behavior in natural environments. In: Cotter-Howells JD, Campbell LS, Valsami-Jones E, Batchelder M (eds) Environmental mineralogy: microbial interactions, anthropogenic influences, contaminated land and waste management, vol 9, Mineralogical Society Series. Mineralogical Society, London, pp 245–289

    Google Scholar 

  14. Sheppard MI (1980) The environmental behaviour of uranium and thorium. Whiteshell Nuclear Research Establishment, Atomic Energy of Canada Limited, Pinawa, Manitoba, 44 pp. (Technical Report AECL-6795)

    Google Scholar 

  15. Fernandes HM, Filho FFLS, Perez V, Franklin MR, Gomiero LA (2006) Radioecological characterization of a uranium mining site located in a semi-arid region of Brazil. J Environ Radioact 88:140–157

    Article  CAS  Google Scholar 

  16. Landa ER, Gray JR (1995) US Geological Survey research on the environmental fate of uranium mining and milling wastes. Environ Geol 26:19–31

    Article  CAS  Google Scholar 

  17. Joshi SR, Waite DT, Platford RF (1989) Vertical distribution of uranium mill tailings contaminants in Langley Bay, Lake Athabasca sediments. Sci Tot Environ 87(88):85–104

    Google Scholar 

  18. Thomas PA (1997) The ecological distribution and bioavailability of uranium series radionuclides in terrestrial food chains: key Lake uranium operations, northern Saskatchewan. Prepared for Environmental Protection, Prairie and Northern Region, Environment Canada, Regina, Saskatchewan, by P.A. Thomas, University of Saskatchewan, Saskatoon, Saskatchewan

    Google Scholar 

  19. Robertson EL, Liber K (2007) Bioassays with caged Hyalella azteca to determine in situ toxicity downstream of two Saskatchewan, Canada, uranium operations. Environ Toxicol Chem 26:2345–2355

    Article  CAS  Google Scholar 

  20. Shropshire DE, Williams KA, Boore WB, Smith JD, Dixon BW, Dunzik-Gougar M, Adams RD, Combert D, Schneider E (2008) Advanced fuel cycle cost basis. Report prepared for Idaho National laboratory, INL/EXT-07-12107 Rev. 1

    Google Scholar 

  21. Diehl P (1999) Depleted uranium: a by-product of the nuclear chain. http://www.antenna.nl/wise-database/uranium/dhap99f.html. Accessed 22 Nov 2009

  22. Tracy BL, Prantl FA (1985) Radiological impact of coal-fired power generation. J Environ Radioact 2:145–160

    Article  CAS  Google Scholar 

  23. Chen JH, Edwards RL, Wasserburg GJ (1986) 238U, 234U & 232Th in seawater. Earth Planet Sci Lett 80:241–251

    Article  CAS  Google Scholar 

  24. Choppin GR, Stout BE (1989) Actinide behaviour in natural waters. Sci Total Environ 83:203–216

    Article  CAS  Google Scholar 

  25. Environment Canada (2008) Canadian water quality guidelines for uranium: Scientific supporting document (Draft) 10th March, 2004 original draft updated 5 Feb 2008

    Google Scholar 

  26. Bosshard E, Zimmerli B, Schlatter Ch (1992) Uranium in the diet: risk assessment of its nephro- and radiotoxicity. Chemosphere 24:309–321

    Article  CAS  Google Scholar 

  27. Langmuir D (1978) Uranium solution-mineral equilibria at low temperatures with application to sedimentary ore deposits. Geochim Cosmochim Act 42:547–569

    Article  CAS  Google Scholar 

  28. Hamelink JL, Landrum PF, Bergman HL, Benson WH (1994) Bioavailability: physical, chemical and biological interactions. Lewis, Boca Raton

    Google Scholar 

  29. Markich SJ, Brown PL, Jeffree RA, Lim RP (2000) Valve movement responses of Velesunio angasi (Bivalvia: Hyriidae) to manganese and uranium: an exception to the free ion activity model. Aquat Toxicol 1:155–175

    Article  Google Scholar 

  30. Denison FH, Garnier-Laplace J (2005) The effects of database parameter uncertainty on uranium (VI) equilibrium calculations. Geochim Cosmochim Acta 69:2183–2191

    Article  CAS  Google Scholar 

  31. Unsworth ER, Jones P (2002) The effect of thermodynamic data on computer model predictions of uranium speciation in natural water systems. J Environ Monit 4:528–532

    Article  CAS  Google Scholar 

  32. Fortin C, Dutel L, Garnier-Laplace J (2004) Uranium complexation and uptake by green alga in relation to chemical speciation: the importance of the free uranyl ion. Environ Toxicol Chem 23:974–981

    Article  CAS  Google Scholar 

  33. Fournier ED, Tran F, Denison J, Massabuau C, Garnier-Laplace J (2004) Valve closure response to uranium exposure for a freshwater bivalve (Corbicula fluminea): qualification of the influence of pH. Environ Toxicol Chem 23:1108–1114

    Article  CAS  Google Scholar 

  34. Markich SJ, Brown PL, Jeffree RA (1996) The use of geochemical speciation modelling to predict the impact of uranium to freshwater biota. Radiochemica Acta 74:321–326

    CAS  Google Scholar 

  35. Reithmuller N, Markich SJ, Van Dam RA, Parry D (2001) Effects of water hardness and alkalinity on the toxicity of uranium to a tropical freshwater hydra (Hydra viridissima). Biomarkers 6:45–51

    Article  Google Scholar 

  36. Barata C, Baird DJ, Markich SJ (1998) Influence of genetic and environmental factors on the tolerance of Daphnia magna straus to essential and non-essential metals. Aquat Toxicol 42:115–137

    Article  CAS  Google Scholar 

  37. Higgo JJW (1987) Clay as a barrier to radionuclide migration. Progr Nucl Energy 19:173–207

    Article  CAS  Google Scholar 

  38. Bernhard G, Geipel G, Brendler V, Nitsche H (1998) Uranium speciation in waters of different uranium miningareas. J Alloy Comp 271–273:201–205

    Article  Google Scholar 

  39. Melville GE (1995) Changes in the pelagic crustacean zooplankton of high-boreal Island Lake, Saskatchewan, associated with uranium mining. Environ Monit Assess 34:45–58

    Article  Google Scholar 

  40. Sheppard SC (1995) Parameter values to model the soil ingestion pathway. Environ Monit Assess 34:27–44

    Article  CAS  Google Scholar 

  41. Fleming S, Marsh M, Wagenaar A, McLaughlin D, Bloxam R (2000) Proposed ambient air quality standards for uranium. Rational Document: for discussion with Port Hope stakeholders. Ontario Ministry of the Environment

    Google Scholar 

  42. Sheppard SC, Evenden WG (1992) Bioavailability indices for uranium: effect of concentration in eleven soils. Arch Environ Contam Toxicol 23:117–124

    Article  CAS  Google Scholar 

  43. Batson VL, Bertsch PM, Herbert BE (1996) Transport of anthropogenic uranium from sediments to surface waters during episodic storm events. J Environ Qual 25:1129–1137

    Article  CAS  Google Scholar 

  44. Babich H, Stotzky G (1985) Heavy metal toxicity to microbe-mediated ecological processes: a review and potential application to regulatory policies. Environ Res 36:111–137

    Article  CAS  Google Scholar 

  45. Coughtrey PJ, Jones CH, Martin MH, Shales SW (1979) Litter accumulation in woodlands contaminated by Pb, Zn, Cd and Cu. Oceologia 39:51–60

    Article  Google Scholar 

  46. Bird GA, Stephenson M, Cornett RJ (1993) The surface water sub model for the assessment of Canada’s Nuclear fuel waste management concept. AECL research report AECL-10290, COG-91-193. Pinawa, Manitoba

    Google Scholar 

  47. Bird GA, Schwartz W (1996) Nuclide concentration factors for freshwater biota. Atomic Energy of Canada limited, Pinawa, Manitoba (Technical Record TR-703, COG-95-397)

    Google Scholar 

  48. FASSET Frederica radiation effects database federica-online.org http://www.frederica-online.org/panel.asp. Accessed 22 Nov 2009

  49. International Atomic Energy Agency (1985) Radionuclides in the marine environment. Technical Reports Series No. 247

    Google Scholar 

  50. International Atomic Energy Agency (1994) Handbook of parameter values for the prediction of radionuclide transfer in temperate environments. Tech Report Series No 364

    Google Scholar 

  51. International Atomic Energy Agency (2010) Modeling the environmental transfer of tritium and carbon-14 to biota and man. Final report, Tritium and Carbon-14 Working Group, IAEA EMRAS Program, International Atomic Energy Agency, Vienna Australia

    Google Scholar 

  52. Sheppard MI, Thibault DH (1990) Default soil solid/liquid partition coefficients, Kds, for four major soil types: a compendium. Health Phys 59:471–482

    CAS  Google Scholar 

  53. Kumblad L, Kautsky U, Naeslund B (2006) Transport and fate or radionuclides in aquatic environments – the use of ecosystem modelling for exposure assessments of nuclear facilities. J Environ Radioact 87:107–129

    Article  CAS  Google Scholar 

  54. Sheppard MI, Thibault DH (1984) Natural uranium concentrations of native plants over a low-grade ore body. Can J Bot 62:1069–1075

    Article  CAS  Google Scholar 

  55. Mahon DC (1982) Uptake and translocation of naturally-occurring radionuclides of the uranium series. Bull Environ Contam Toxicol 29:697–703

    Article  CAS  Google Scholar 

  56. Hanson WC, Miera FR Jr, (1976) Long-term ecological effects of exposure to uranium. Technical Report LA-6269 Los Alamos Scientific Lab, New Mexico, USA

    Book  Google Scholar 

  57. Beyer WN, Connor EE, Gerould S (1994) Estimates of soil ingestion by wildlife. J Wildl Manage 58:375–382

    Article  Google Scholar 

  58. Linsalata P, Morse R, Ford H, Eisenbud M, Franca EP, de Castro MB, Lobao N, Sachett I, Carlos M (1989) Transport pathways of Th, U, Ra and La from soil to cattle tissues. J Environ Radioact 10:115–140

    Article  CAS  Google Scholar 

  59. Weeks HP, Kirkpatrick CM (1976) Adaptations of white-tailed deer to naturally occurring sodium deficiencies. J Wildl Manage 40:610–625

    Article  CAS  Google Scholar 

  60. Sullivan MF (1980) Absorption of actinide elements from the gastrointestinal tract of neonatal animals. Health Phys 38:173–185

    Article  CAS  Google Scholar 

  61. Hesslein RH (1987) Whole-lake metal radiotracer movement in fertilized lake basins. Can J Fish Aquat Sci 44(suppl 1):74–82

    Article  CAS  Google Scholar 

  62. Fisher NS, Teyssie JL, Krishnaswami S, Baskaran M (1987) Accumulation of Th, Pb, U, and Ra in marine phytoplankton and its geochemical significance. Limnol Oceanogr 32:131–142

    Article  CAS  Google Scholar 

  63. Degens ET, von Bronsart G, Ho Kim W, Khoo F, Dickman MD (1979) Environmental parameters responsible for the fixation of uranium in recent sediments; test area Bow lake, Ontario, Canada, Part 1. Mitteilungen aus dem Geologisch-Palaeontologischen Institut der Universitaet Hamburg, no. 49, pp 27–60

    Google Scholar 

  64. Nyffeler UP, Santschi PH, Li YH (1986) The relevance of scavenging kinetics to modelling of sediment-water interactions in natural waters. Limnol Oceanogr 31:277–292

    Article  CAS  Google Scholar 

  65. Bird GA, Stephenson M, Cornett RJ (1993) The surface water model for assessing Canada’s nuclear fuel waste disposal concept. Waste Manag 13:153–170

    Article  CAS  Google Scholar 

  66. Santschi PH, Nyffeler UP, Anderson RF, Schiff SL, O’Hara P, Hesslein RH (1986) Response of radioactive trace metals to acid-base titrations in controlled experimental ecosystems: evaluation of transport parameters for application to whole-lake radiotracer experiments. Can J Fish Aquat Sci 43:60–77

    Article  CAS  Google Scholar 

  67. Carignan R, Nriagu JO (1985) Trace metal deposition and mobility in the sediments of two lakes near Sudbury, Ontario. Geochim Cosmochim Acta 49:1753–1764

    Article  CAS  Google Scholar 

  68. Swanson SM (1985) Food-chain transfer of U-series radionuclides in a northern Saskatchewan aquatic system. Health Phys 49:747–770

    Article  CAS  Google Scholar 

  69. Bird GA, Evenden WG (1994) Effect of sediment type, temperature and colloids on the transfer of radionuclides from water to sediment. J Environ Radioact 22:219–242

    Article  CAS  Google Scholar 

  70. Ames LL, McGarrah JE, Walker BA (1983) Sorption of uranium and radium by biotote, muscovite, and phlogopite. Clays Clay Mater 31:343–351

    Article  CAS  Google Scholar 

  71. Santsci PH, Honeyman BD (1989) Radionuclides in aquatic environments. Radiat Phys Chem 34:213–40

    Google Scholar 

  72. Livens FR (1991) Chemical reactions of metals with humic material. Environ Pollut 70:183–208

    Article  CAS  Google Scholar 

  73. Bird GA, Schwartz WJ, Motycka M (1998) Fate of 60Co and 134Cs added to the hypolimnion of a Canadian Shield lake: accumulation in biota. Can J Fish Aquat Sci 55:987–998

    Article  CAS  Google Scholar 

  74. Likens GE, Davis MB (1975) Post-glacial history of Mirror Lake and its watershed in New Hampshire, U.S.A. An initial report. Int Ver Theor Angew Limnol 19:982–993

    Google Scholar 

  75. Evans RD, Rigler FH (1983) A test of the lead-210 dating for the measurement of whole lake soft sediment accumulation. Can J Fish Aquat Sci 40:506–515

    Article  Google Scholar 

  76. Shaw TJ, Sholkovitz ER, Kinkhammer G (1994) Redox dynamics in the Chesapeake Bay; The effect on sediment/water uranium exchange. Geochim Cosmochim Acta 58:2985–2995

    Article  CAS  Google Scholar 

  77. Alberic P, Viollier EP, Jezequel D, Grosbois C, Michard G (2000) Interactions between trace elements and dissolved organic matter in the stagnant anoxic deep layer of a meromictic lake. Limnol Oceanogr 45:1088–1096

    Article  CAS  Google Scholar 

  78. Edgington DN, Robbins JA, Colman SM, Orlandini KA, Gustin MP (1996) Uranium-series disequilibrium, sdimentation, diatom fustules, and paleoclimate change in Lake Baikal. Earth Plant Sci Lett 142:29–42

    Article  CAS  Google Scholar 

  79. Hart BT (1982) Uptake of trace metals by sediments and suspended particulate: a review. Hydrobiologia 91:299–313

    Google Scholar 

  80. Alberts JJ, Wahlgren MA, Orlandini KA, Durbahn CA (1989) The distributions of 29,240Pu, 238Pu, 241Am and 137Cs among chemically-defined components of sediments, settling particulates and net plankton of lake Michigan. J Environ Radioact 9:89–103

    Article  CAS  Google Scholar 

  81. Jenne EA (1968) Controls on Mn, Fe, Co, Ni, Cu, and Zn concentrations in soils and water: the significant role of hydrous Mn and Fe oxides. In: Gould RF (ed) Trace inorganics in water, vol 73. American Chemical Society, Washington DC, pp 337–387

    Chapter  Google Scholar 

  82. Wetzel RG (1975) Limnology. WB Saunders, Philadelphia

    Google Scholar 

  83. Kovalsky VV, Vorotnitskaya IE (1965) Biogenic migration of uranium in Lake Issyk-Kul’. Geokhimiya 6:724–732

    Google Scholar 

  84. Otton JK, Zielinski RA, Been JM (1989) Uranium in Holocene valley-fill sediments, and uranium, radon and helium in waters, Lake Tahoe-Carson Range Area Nevada and California. U.S.A. Environ Geol Water Sci 13:15–28

    Article  CAS  Google Scholar 

  85. Landa ER (1982) Leaching of radionuclides from uranium ore and mill tailings. Uranium 1:53–64

    CAS  Google Scholar 

  86. Bird GA, Schwartz WJ, Motycka M, Rosentreter J (1998) Behaviour of 60Co and 134Cs in a Canadian shield lake over five years. Sci Tot Environ 212:115–135

    Article  CAS  Google Scholar 

  87. Simpson SL, Apte SC, Batley GE (1998) Effect of short-term resuspension events on trace metal speciation in polluted anoxic sediment. Environ Sci Technol 32:620–625

    Article  CAS  Google Scholar 

  88. Walgren MA, Alberts JJ, Nelson DM, Orlandin KA (1976) Study of the behaviour of transuranics and possible chemical analogues in Lake Michigan water and biota. In: IAEA, Transuranium nuclides in the environment. Symposium Proceedings, San Francisco, pp 9–24. STI/PUB/410, International Atomic Energy Agency,Vienna

    Google Scholar 

  89. Swanson SM (1983) Levels of 226Ra, 210Pb, and totalU in fish near a Saskatchewan uranium mine and mill. Health Phys 45:67–80

    Article  CAS  Google Scholar 

  90. Ahsanullah M, Williams AR (1989) Kinetics of uranium uptake by the crab Pachygrapsus laevimanus and the zebra winkle Austrocochlea constricta. Mar Biol 101:323–327

    Article  CAS  Google Scholar 

  91. Mirka MA, Clulow FV, Dave NK, Lim TP (1986) Radium-226 in cattails, Typha latifolia and bone of muskrat, Ondatra zibethica (L.) from a watershed with uranium tailings near the city of Elliot Lake, Canada. Environ Pollut 91:41–51

    Article  Google Scholar 

  92. Waite DT, Joshi SR, Sommerstad H (1988) The effect of uranium mine tailings on radionuclide concentrations in Langley Bay, Saskatchewan, Canada. Arch Environ Contam Toxicol 17:373–380

    Article  CAS  Google Scholar 

  93. Golder Associates Ltd. (2002) Final report on current period environmental monitoring program for the Beaverlodge Mine site in northern Saskatchewan. Submitted to Cameco Corporation, Saskatoon, Saskatchewan, by Golder Associates Ltd., Saskatoon, Saskachewan

    Google Scholar 

  94. Aery NC, Jain GS (1998) Influence of uranium on the growth of wheat. J Environ Biol 19:5–23

    Google Scholar 

  95. Gulati KL, Oswal MC, Nagpaul KK (1980) Assimilation of uranium by wheat and tomato plants. Plant Soil 55:55–59

    Article  CAS  Google Scholar 

  96. Meyer MC, Paschke MW, McLendon T, Price D (1998) Decreases in soil microbial function and functional diversity in response to depleted uranium. J Environ Qual 27:1306–1311

    Article  CAS  Google Scholar 

  97. Sheppard SC (1989) Toxicity levels of arsenic and uranium in soils. Atomic Energy of Canada Limited, Pinawa, Manitoba (AECL Technical Report TR-480)

    Google Scholar 

  98. Sheppard MI, Thibault DH, Shepppard SC (1985) Concentrations and concentration ratios of U, As and Co in Scots pine grown in waste-site soil and an experimentally contaminated soil. Water Air Soil Pollut 26:85–94

    Article  CAS  Google Scholar 

  99. Sheppard SC, Evenden WG, Anderson AJ (1992) Multiple assays of uranium toxicity in soil. Environ Toxicol Wat Qual 7:275–294

    Article  CAS  Google Scholar 

  100. Sheppard SC, Sheppard MI, Gallerand M-O, Sanipelli B (2005) Derivation of ecotoxicity threshold for uranium. J Environ Radioact 79:55–83

    Article  Google Scholar 

  101. Weinberger P, Murthy TCSS (1985) Uranium uptake and its effects on the germination and early growth of some crop species. Report for Atomic Energy of Canada Limited, Whiteshell Nuclear Research Establishment, Pinawa, Manitoba Technical Record TR-329

    Google Scholar 

  102. Kabata-Pendias A, Pendias H (1992) Trace elements in soils and plants, 2nd edn. CRC Press, Boca Raton, 365 pp

    Google Scholar 

  103. Durbin PW, Wrenn ME (1975) Metabolism and effects of uranium in animals. Conference on occupational health experience with uranium. Arlington, Virginia, April 28–30, 1975. U.S. Energy Research & Development Administration; U.S. Government Printing Office, Washington, DC, pp 68–129 (ERDA 93)

    Google Scholar 

  104. Leach LJ, Yuile CL, Hodge HC, Sylvester GE, Wilson HB (1973) A five-year inhalation study with natural uranium dioxide (UO2) dust –II. Postexposure retention and biological effects in the monkey, dog and rat. Health Phys 25:239–258

    Article  CAS  Google Scholar 

  105. Leach LJ, Maynard EA, Hodge HC, Scott JK, Yuile CL, Sylvester GE, Wilson HB (1970) A five year inhalation study with natural uranium dioxide (UO2) dust –1. Retention and biological effect in the monkey, dog and rat. Health Phys 18:599–612

    Article  CAS  Google Scholar 

  106. Kocher DC (1989) Relationship between kidney burden and radiation dose from chronic ingestion of U: implications for radiation standards for the public. Health Phys 57:9–15

    Article  CAS  Google Scholar 

  107. Yuile CL (1973) Animal experiments. In: Hodge HC, Stannard JN, Hursh JB (eds) Uranium, plutonium, transplutonic elements. Springer, NewYork, pp 165–196

    Chapter  Google Scholar 

  108. Llobet JM, Sirvent JJ, Ortega A, Domingo JL (1991) Influence of chronic exposure to uranium on male reproduction in mice. Fund Appl Toxicol 16:821–829

    Article  CAS  Google Scholar 

  109. Harrison JD (1991) The gastrointestinal absorption of the actinide elements. Sci Tot Environ 100:43–60

    Article  CAS  Google Scholar 

  110. Wrenn ME, Durbin PW, Howard B, Lipsztein J, Rundo J, Still ET, Willis DL (1985) Metabolism of ingested U and Ra. Health Phys 48:601–633

    Article  CAS  Google Scholar 

  111. Wrenn ME, Bertelli L, Durbin PW, Eckerman KF, Lipsztein JL, Singh NP (1995) A biokinetic and dosimetric model for the metabolism of uranium. Atomic Energy Control Board, Ottawa, Ontario 79 pp (INFO-0500)

    Google Scholar 

  112. International Commission on Radiological Protection (1979) Limits on intake of radionuclides by workers. ICRP Publication 30, Part 1. Pergamon, New York

    Google Scholar 

  113. Leggett RW, Harrison JD (1995) Fractional absorption of ingested uranium in humans. Health Phys 68:484–498

    Article  CAS  Google Scholar 

  114. Moss MM (1989) Study of the effects of uranium on kidney function. Atomic Energy Control Board INFO-0306

    Google Scholar 

  115. Sullivan MF, Gorham LS (1982) Further studies on the absorption of actinide elements from the gastrointestinal tract of neonatal animals. Health Phys 43:509–519

    Article  CAS  Google Scholar 

  116. LaTouche YD, Willis DL, Dawydiak OI (1987) Absorption and biokinetics of U in rats following oral administration of uranyl nitrate solution. Health Phys 53:147–162

    Article  CAS  Google Scholar 

  117. Tracy BL, Quinn JM, Lahey J, Gilman AP, Mancuso K, Yagminas AP, Villenueve DC (1992) Absorption and retention of uranium from drinking water by rats and rabbits. Health Phys 62:65–73

    Article  CAS  Google Scholar 

  118. Morris SC, Meinhold AF (1995) Probabilistic risk assessment of nephrotoxic effect of uranium in drinking water. Health Phys 69:897–908

    Article  CAS  Google Scholar 

  119. Hursh JB, Neuman WF, Toribara T, Wilson H, Waterhouse C (1969) Oral ingestion of U by man. Health Phys 17:619–621

    CAS  Google Scholar 

  120. Berlin M, Rudale B (1979) Uranium. In: Friberg L, Norberg GF, Vouk VB (eds) Handbook on the toxicology of metals. Elsevier/North Holland Biomedical, Amsterdam, pp 647–658

    Google Scholar 

  121. Leggett RW (1989) The behavior and chemical toxicity of U in the kidney: a reassessment. Health Phys 57:365–383

    Article  CAS  Google Scholar 

  122. Domingo JL (2001) Reproductive and developmental toxicity of natural and depleted uranium: a review. Reprod Toxicol 15:603–609

    Article  CAS  Google Scholar 

  123. Gilman AP, Villeneuve DC, Secours VE, Yagminas AP, Tracy BL, Quinn JM, Valli VE, Moss MA (1998) Uranyl nitrate: 91-day toxicity studies in the New Zealand white rabbit. Toxicol Sci 41:129–137

    Article  CAS  Google Scholar 

  124. Gilman AP, Villeneuve DC, Secours VE, Yagminas AP, Tracy BL, Quinn JM, Valli VE, Willes RJ, Moss MA (1998) Uranyl nitrate: 28-day and 91-day toxicity studies in the Sprague-Dawley rat. Toxicol Sci 41:117–128

    CAS  Google Scholar 

  125. Gilman AP, Moss MA, Villeneuve DC, Secours VE, Yagminas AP, Tracy BL, Quinn JM, Long G, Valli VE (1998) Uranyl nitrate: 91-day exposure and recovery studies in the male New Zealand White rabbit. Toxicol Sci 41:138–151

    Article  CAS  Google Scholar 

  126. Paternain JL, Domingo JL, Ortega A, Llobet JM (1989) The effects of uranium on reproduction, gestation and postnatal survival in mice. Ecotoxicol Environ Saf 17:291–296

    Article  CAS  Google Scholar 

  127. Domingo JL, Paternain JL, Llobet JM, Corbella J (1989) The developmental toxicity of uranium in mice. Toxicol 55:143–152

    Article  CAS  Google Scholar 

  128. Maynard EA, Hodge HC (1949) Studies of the toxicity of various uranium compounds when fed to experimental animals. In: Voegtlin C, Hodge HC (eds) 1953 Pharmacology and toxicology of uranium compounds chronic inhalation and other studies. McGraw-Hill, New York, pp 309–376

    Google Scholar 

  129. Maynard EA, Downs WL, Hodge HC (1949) Oral toxicity of uranium compounds. In: Voegtlin C, Hodge HC (eds) The Pharmacology and toxicology of uranium compounds. McGraw-Hill, New York, pp 1221–1369

    Google Scholar 

  130. Domingo JL, Ortega A, Paternain JL, Corbella J (1989) Evaluation of the perinatal and postnatal effects of uranium in mice upon oral administration. Arch Environ Health 44:395–398

    Article  CAS  Google Scholar 

  131. Harvey RB, Kubera LF, Phillips TD, Heidelbaugh ND (1986) Validation of impaired renal function chick model with uranyl nitrate. Bull Environ Contam Toxicol 36:67–72

    Article  CAS  Google Scholar 

  132. Morrow P, Gelein R, Beiter H, Scott J, Picano J, Yuile C (1982) Inhalation and intravenous studies of UF6/UO2F2 in dogs. Health Phys 43:859–873

    Article  CAS  Google Scholar 

  133. World Health Organization (2004) Uranium in Drinking-water: background document for development of WHO guidelines for drinking-water quality. World Health Organization, Geneva, Switzerland, WHO/SDE/WSH/03.04/118

    Google Scholar 

  134. Health Canada (1999) Uranium guidelines for canadian drinking water quality: supporting documentation. http://www.hc-sc.gc.ca/ewh-semt/pubs/water-eau/uranium/guideline-recommandation-eng.php

  135. Hursh JB, Spoor NL (1973) Data on man. In: Hodge HC, Stannard JN, Hursh JB (eds) Handbook of experimental pharmacology: uranium, plutonium, transplutonic elements, vol 36. Springer, Berlin, pp 197–239

    Chapter  Google Scholar 

  136. International Commission on radiological protection (1959) Permissible dose for internal radiation. International Commission on radiological protection Publication 2. Pergamon, Oxford

    Google Scholar 

  137. SuLu Fu-Yao Zhao (1990) Nephrotoxic limit and annual limit on intake for natural U. Health Phys 58:619–623

    Article  Google Scholar 

  138. Sample BE, Suter GW, II (1996) Estimating exposure of terrestrial wildlife to contaminants. Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, 59 pp. (ES/ER/TM-125)

    Google Scholar 

  139. Linsalata P (1994) Uranium and thorium decay series radionuclides in human and animal foodchains – a review. J Environ Qual 23:633–642

    Article  CAS  Google Scholar 

  140. Haseltine SD, Sileo L (1983) Response of American black ducks to dietary uranium: a proposed substitute for lead shot. J Wildl Manage 47:1124–1129

    Article  CAS  Google Scholar 

  141. Harvey RB, Kubera LF, Lovering SL, Mollenhauer HH, Phillips TD (1986) Acute toxicity of uranyl nitrate to growing chicks: a pathophysiologic study. Bull Environ Contam Toxicol 37:907–915

    Article  CAS  Google Scholar 

  142. Kovalsky VV, Vorotnitskaya IE, Lekarev VS (1967) Biogeochemical food chains of uranium in aquatic and terrestrial organisms. In: Aberg B, Hungate FP (eds) Radioecological concentration processes. Pergamon, London, pp 329–332

    Google Scholar 

  143. Cooley HM, Evans RE, Klaverkamp JF (2000) Toxicology of dietary uranium in lake whitefish (Coregonus clupeaformis). Aquat Toxicol 48:495–515

    Article  CAS  Google Scholar 

  144. Cooley HM, Klaverkamp JF (2000) Accumulation and distribution of dietary uranium in lake whitefish (Coregonus clupeaformis). Aquat Toxicol 48:477–494

    Article  CAS  Google Scholar 

  145. Bywater JF, Banaczkowski R, Bailey M (1991) Sensitivity to uranium of six species of tropical freshwater fishes and four species of cladocerans from northern Australia. Environ Toxicol Chem 10:1449–1458

    Article  CAS  Google Scholar 

  146. Simon O, Garnier-Laplace J (2005) Laboratory and field assessment of uranium trophic transfer efficiency in the crayfish Orconectes limosus fed the bivalve C. fluminea. Aquat Toxicol 74:372–383

    Article  CAS  Google Scholar 

  147. Vizon SciTec (2004) Final Report on the toxicity investigation of uranium to aquatic organisms. Prepared for the Canadian Nuclear Safety Commission, Ottawa, Ontario by Vizon SciTec, Vancouver, British Columbia RSR-019-80

    Google Scholar 

  148. Tarzwell CM, Henderson C (1960) Toxicity of less common metals to fish. Ind Waste 5:52–67

    Google Scholar 

  149. Parkhurst BR, Elder RG, Meyer JS, Sanchez DA, Pennak RW, Waller WT (1984) An environmental hazard evaluation of uranium in a Rocky Mountain stream. Environ Toxicol Chem 3:113–124

    Article  CAS  Google Scholar 

  150. Davies PH (1980) Acute toxicity of uranium to brook trout (Salvelinus fontinalis) and rainbow trout (Salmo gairdneri) in soft water. Fort Collins, Coloradao, Colorado Division of Wildlife F-33-R-15

    Google Scholar 

  151. Liber K, Stoughton S, Janz D (2003) Uranium toxicity testing using early life stage lake trout (Salvelinus namaycush). Draft report submitted to Saskatchewan Environment, Saskatoon, Saskatchewan by Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan

    Google Scholar 

  152. Trapp KE (1986) Acute toxicity of uranium to waterfleas (Daphnia pulex) and bluegill (Lepomis macrochirus). Environmental & Chemical Sciences, Inc., Aiken, South Carolina (Report ECS-SR-30)

    Google Scholar 

  153. Labrot F, Narbonne JF, Ville P, Saint Denis M, Ribera D (1999) Acute toxicity, toxicokinetics, and tissue target of lead and uranium in the clam Corbicula fluminea and the worm Eisenia fetida: comparison with the fish Brachydanio rerio. Arch Environ Contam Toxicol 36:167–178

    Article  CAS  Google Scholar 

  154. Hamilton SJ (1995) Hazard assessment of inorganics to three endangered fish in the Green River, Utah. Ecotoxicol Environ Saf 30:134–142

    Article  CAS  Google Scholar 

  155. Hamilton SJ, Buhl KJ (1997) Hazard evaluation of inorganics, singly and in mixtures, to flannelmouth sucker Catostomus Iatipinnis in the San Juan River, New Mexico. Ecotoxicol Environ Saf 38:296–308

    Article  CAS  Google Scholar 

  156. Holdway DA (1992) Uranium toxicity to two species of Australian tropical fish. Sci Tot Environ 125:137–158

    Article  CAS  Google Scholar 

  157. Poston TM, Hanf RW Jr, Simmons MA (1984) Toxicity of uranium to Daphnia magna. Water Air Soil Pollut 22:289–298

    Article  CAS  Google Scholar 

  158. Zeman FA, Gilbin R, Alonzo F, Lecomte-Pradines C, Garnier-Laplace J, Aliaume C (2008) Effects of waterbourne uranium on survival, growth, reproduction and physiological processes of the freshwater cladoceran Daphnia magna. Aquat Toxicol 86:370–378

    Article  CAS  Google Scholar 

  159. Kuhne WW, Caldwell CA, Gould WR, Fresquez PR, Finger S (2002) Effects of depleted uranium on the health and survival of Ceriodaphnia dubia and Hyalella azteca. Environ Toxicol Chem 21:2198–2203

    CAS  Google Scholar 

  160. Liber K, George T (2000) Toxicity of uranium to Ceriodaphnia dubia at different water hardnesses representative of northern Saskatchewan conditions. Report for COGEMA Resources Inc., Saskatoon, Saskatchewan. Toxicity Centre, University of Saskatchewan, Saskatoon, Saskatchewan

    Google Scholar 

  161. Pickett JB, Specht WL, Keyes JL (1993) Acute and chronic toxicity of uranium compounds to Ceriodaphnia dubia. Westinghouse Savannah River Co., Aiken, South Carolina. Prepared for the Department of Energy under contract DE-AC09-89SR 18035, 57 pp (WSRC-RP-92-995)

    Google Scholar 

  162. Semaan M, Holdway DA, van Dam RA (2001) Comparative sensitivity of three populations of the cladoceran Moinodaphnia macleayi to acute and chronic uranium exposure. Environ Toxicol 16:365–376

    Article  CAS  Google Scholar 

  163. Charles AL, Markich SJ, Stauber JL, De Filippis LF (2002) The effect of water hardness on the toxicity of uranium to a tropical freshwater alga (Chlorella sp.). Aquat Toxciol 60:61–73

    Article  CAS  Google Scholar 

  164. Franklin NM, Stauber JL, Markich SJ, Lim RP (2000) pH-dependent toxicity of copper and uranium to a tropical freshwater alga (Chlorella sp.). Aquat Toxicol 48:275–289

    Article  CAS  Google Scholar 

  165. Hogan A, van Dam R, Masrkich S, Camerilleri C (2005) Chronic toxicity of uranium to a tropical green alga (Chlorella sp.) in natural waters and the influence of dissolved organic carbon. Aquat Toxicol 75:343–353

    Article  CAS  Google Scholar 

  166. van Dam R, Hogan A, Houston M, Noul S, Lee N (2006) Chronic toxicity of uranium to Lemna aequinoctialis and Amerianna cuming, In: Jones DR, Evans KG, Webb A (eds) Eriss research summary 2005–2006, Supervising Scientist Report 193, Supervising Scientist, Darwin NT

    Google Scholar 

  167. Borgmann U, Couillard Y, Doyle P, Dixon DG (2005) Toxicity of sixty-three metals and metalloids to Hyalella Azteca at two levels of water hardness. Environ Toxicol Chem 24:641–652

    Article  CAS  Google Scholar 

  168. Alves LC, Borgmann U, Dixon DG (2008) Water-sediment interactions for Hyalella azteca exposed to uranium-spiked sediment. Aquat Toxic 87:187–199

    Article  CAS  Google Scholar 

  169. Burnett C, Liber K (2006) Can Chironomus tentans develop tolerance to uranium exposures over several generations? Society of environmental Toxicology and Chemistry (SETAC) North America 27th Annual meeting, Montreal

    Google Scholar 

  170. Dias V, Ksas B, Camilleri V, Bonzom JM (2005) Sublethal effects of sediment-associated uranium on Chironomus riparius (Diptera: Chironomidae) larvae. Radioprotection Suppl 40:S191–S197

    Article  Google Scholar 

  171. Hyne RV, Rippon GD, Ellender G (1992) pH-dependent uranium toxicity to freshwater hydra. Sci Tot Environ 125:159–173

    Article  CAS  Google Scholar 

  172. Liber K, Stoughton S, Rosaasen A (2004) Chronic uranium toxicity to white sucker fry (Catostomus commersoni). Bull Environ Contam Toxicol 73:1065–1071

    Article  CAS  Google Scholar 

  173. Keklak MM, Newman MC, Mulvey M (1994) Enhanced uranium tolerance of an exposed population of the eastern Mosquitofish (Gambusia holbrooki Girard 1859). Arch Environ Contam Toxicol 27:20–24

    Article  CAS  Google Scholar 

  174. Krueger S, Olson GJ, Johnsonbaugh D, Beveridge TJ (1993) Characterization of binding of gallium, platinum, and uranium to Pseudomonas fluorescencesby small-angle x-ray scattering and transmission electron microscopy. Appl Environ Microbiol 59:4056–4064

    CAS  Google Scholar 

  175. Khangarot BS (1991) Toxicity of metals to a freshwater tubificid worm, Tubifex tubifex (Muller). Bull Environ Contam Toxicol 46:906–912

    Article  CAS  Google Scholar 

  176. Liu H-H, Wu JT (1993) Uptake and recovery of americium and uranium by Anacystis biomass. J Environ Sci Health part A Environ Sci Engin 28:491–504

    Google Scholar 

  177. Nakajima A, Horikoshi T, Sakaguchi T (1979) Ion effects on the uptake of uranium by Chlorela regularis. Agric Biol Chem 43:625–629

    Article  CAS  Google Scholar 

  178. Horikoshi T, Nakajima A, Sakaguchi T (1979) Uptake of uranium by Chlorella cells grown under autorophic, heterotrophic and mixotrophic cultue conditions. Agric Biol Chem 45:781–783

    Article  Google Scholar 

  179. Chassard-Bouchard C (1983) Cellular and subcellular localization of uranium in the crab Carcinus maenas: a microanalytical study. Mar Pollut Bull 14:133–136

    Article  Google Scholar 

  180. Jaagumagi R, Bedard D (2001) Bancroft area mines (Madawaska, Bicroft and Dyno Mines): assessment of impacts on water, sediment and biota from historical uranium mining activities. Final Report Prepared for Peterborough District Eastern Region Ministry of the Environment

    Google Scholar 

  181. Carroll JJ, Ellis SJ, Oliver WS (1979) Influence s of total hardness constituents on the acute toxicity of cadmium to brook trout (Salvelinus fontinalis). Bull Environ Contam Toxicol 22:575–581

    Article  CAS  Google Scholar 

  182. Welsh PG, Lipton J, Chapman GA, Podrarsky TL (2000) Relative importance of calcium and magnesium in hardness-based modification of copper toxicity. Environ Toxicol Chem 19:1624–1631

    Article  CAS  Google Scholar 

  183. Holdway DA (1992) Uranium mining in relation to toxicological impacts on inland waters. Ecotoxicology 1:75–88

    Article  CAS  Google Scholar 

  184. Australian and New Zealand guidelines for fresh and marine water quality: Vol 2 – Aquatic ecosystems – Rationale and background information, Section 8.3.7 (http://www.mincos.gov.au/_data/assets/pdf_file/0020/316136/gfmwq-guidelines-vol2-8-3b.pdf). Accessed 14 Jan 2010

  185. BEAK International incorporated (1998) Toxicity of uranium and trace metal discharged to the aquatic environment. Prepared for Atomic Energy Control Board, Ottawa, Ontario, August 1998. Dorval, Quebec (Solicitation No. 87055-7-5010/1)

    Google Scholar 

Books and Reviews

  • Voegtlin C, Hodge HC (eds) (1953) Pharmacology and toxicology of uranium compounds chronic inhalation and other studies. McGraw-Hill, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glen A. Bird .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Cite this entry

Bird, G.A. (2012). Uranium in the Environment : Behavior and Toxicity. In: Meyers, R.A. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0851-3_294

Download citation

Publish with us

Policies and ethics