Skip to main content

Fallout Radionuclides and the Study of Erosion and Sedimentation

  • Reference work entry
Encyclopedia of Sustainability Science and Technology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 6,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Activity:

The concentration of a given radionuclide in a soil or sediment per unit mass, also referred to as the mass activity density.

Erosion:

The mobilization of soil and sediment from its original location or a temporary store within the landscape by a range of agents, including water and wind.

Fallout radionuclides:

Radionuclides that enter the terrestrial and aquatic environments as fallout.

Fluvial system:

Landscape systems associated with streams and rivers and driven by rainfall and runoff.

Gamma spectrometry:

Measurement of the gamma-emitted radioactivity in soils and sediment, using a gamma spectrometer.

Gross erosion:

The total amount of soil mobilized by erosion within a given area.

Half-life:

The time taken for a radionuclide to decay to the point where its activity is half the original activity.

Inventory:

An alternative term for the areal activity density, which represents the total radionuclide content of a soil or sediment deposit per unit surface area.

Net erosion:

The total amount of eroded sediment transported out of a given area. This represents the gross erosion within that area minus the deposition occurring within that area.

Off-site impacts:

The impacts of soil erosion associated with the transport of eroded soil away from the original point of erosion, for example, by streams and rivers.

On-site impacts:

The impacts of soil erosion associated with the point where erosion occurs and including reduction in soil depth, loss of productivity, and destruction of agricultural land.

Sediment budget:

A conceptual model of the sources, transfers, sinks, and outputs of sediment for a catchment or river basin. The model may quantify mobilization, transfer, storage, and output.

Sediment delivery ratio:

This represents the ratio of the amount of sediment leaving a field or catchment to the total amount of sediment mobilized by erosion within that area. It provides a measure of the efficiency of sediment transfer out of the system considered. The sediment delivery ratio will decrease as deposition increases.

Sediment:

Material transported or deposited within fluvial, aeolian, and other erosional systems.

Sediment source fingerprinting:

Use of a range of biogeochemical properties to characterize or fingerprint different potential sediment sources. The properties of transported or deposited sediment are compared with those fingerprints, in order to determine its source.

Sediment source:

The point, place, or area from which sediment was mobilized.

Sedimentation:

A term frequently used to refer to the study of sediment transport in fluvial systems, including sediment mobilization, transport, and deposition, but also used in a more narrow sense to refer to deposition of sediment in sinks including river channels and floodplains, lakes and reservoirs, and estuaries and coastal environments.

Bibliography

Primary Literature

  1. Oldeman LR (1994) The global extent of land degradation. In: Greenland DJ, Szabolcs I (eds) Land resilience and sustainable land use. CABI, Wallingford, pp 99–118

    Google Scholar 

  2. Speth JG (1994) Desertification convention essential for food security. Environ Conserv 21:4–5

    Article  Google Scholar 

  3. Toy TJ, Foster GR, Renard KG (2002) Soil erosion: processes, prediction, measurement and control. Wiley, New York, 352 p

    Google Scholar 

  4. Buringh P (1981) An assessment of the losses and degradation of productive agricultural land in the world. FAO Working Group on Soils Policy, Rome

    Google Scholar 

  5. Brown LR (1984) Conserving soils. In: Brown LR (ed) State of the world 1984. Norton, New York, pp 53–75

    Google Scholar 

  6. Yang D, Kanae S, Oki T, Koike T, Muslake K (2003) Global potential soil erosion with reference to land use and climate changes. Hydrol Process 17:2913–2928

    Article  Google Scholar 

  7. Lal R (2003) Soil erosion and the global carbon budget. Environ Int 29:437–450

    Article  CAS  Google Scholar 

  8. Van Oost K, Quine TA, Govers G, De Gryze S, Six J, Harden JW, Ritchie JC, McCarty GW, Heckrath G, Kosmas C, Giraldez JV, Marques da Silva JR, Merckx R (2007) The impact of agricultural soil erosion on the global carbon budget. Science 318:626–629

    Article  CAS  Google Scholar 

  9. Clark EH, Haverkamp JA, Chapman W (1985) Eroding soils: the off-farm impacts. The Conservation Foundation, Washington, DC

    Google Scholar 

  10. Pimentel D, Harvey C, Resosuarmo P, Sinclair K, Kurz D, McNair M, Crist S, Shpritz L, Fitton L, Saffourni R, Blair R (1995) Environmental and economic costs of soil erosion and conservation benefits. Science 267:1117–1123

    Article  CAS  Google Scholar 

  11. Mahmood K (1987) Reservoir sedimentation: Impact, extent and mitigation. World Bank Technical Paper no. 71. The World Bank, Washington, DC

    Google Scholar 

  12. Lal R (1994) Soil erosion research methods. St. Lucie Press, Boca Raton, 340 p

    Google Scholar 

  13. Morris GL, Fan J (1998) Reservoir sedimentation handbook: design, and management of dams, reservoirs and watersheds for sustainable use. McGraw Hill, New York, 750 p

    Google Scholar 

  14. Mabit L, Benmansour M, Walling DE (2008) Comparative advantages and limitations of the fallout radionuclides 137Cs, 210Pbex and 7Be for assessing soil erosion and sedimentation. J Environ Radioactiv 99:1799–1807

    Article  CAS  Google Scholar 

  15. Goldberg ED (1963) Geochronology with Pb-210 in radioactive dating. In: Proceedings of a symposium on radioactive dating, International Atomic Energy Agency, Vienna. Contribution 1510, pp 121–131

    Google Scholar 

  16. Menzel RG (1960) Transport of strontium-90 in runoff. Science 131:499–500

    Article  CAS  Google Scholar 

  17. Yamagata N, Matsuda S, Kodaira K (1963) Run-off of caesium-137 and strontium-90 from rivers. Nature 200:668–669

    Article  Google Scholar 

  18. Rogowski AS, Tamura T (1965) Movement of 137Cs by runoff, erosion and infiltration on the alluvial Captina silt loam. Health Phys 11:1333–1340

    Article  Google Scholar 

  19. Ritchie JC, Spraberry JA, McHenry JR (1974) Estimating soil erosion from the redistribution of fallout 137Cs. Soil Sci Soc Am J 38:137–139

    Article  Google Scholar 

  20. McHenry JR, Ritchie JC (1977) Estimating field erosion losses from fallout Cs-137 measurements. International Association of Hydrological Sciences Publication no. 122. IAHS, Wallingford, pp 26–33

    Google Scholar 

  21. de Jong E, Begg CBM, Kachanoski RG (1983) Estimates of soil erosion and deposition from some Saskatchewan soils. Can J Soil Sci 63:607–617

    Article  Google Scholar 

  22. Kachanoski RG, de Jong E (1984) Predicting the temporal relationship between cesium-137 and erosion rate. J Environ Qual 13:301–304

    Article  Google Scholar 

  23. McCallan ME, O’Leary BM, Rose CW (1980) Redistribution of caesium-137 by erosion and deposition on an Australian soil. Aust J Soil Sci 18:119–128

    Article  CAS  Google Scholar 

  24. Campbell BL, Loughran RJ, Elliott GL (1982) Caesium-137 as an indicator of geomorphic processes in a drainage system. Aust Geogr Stud 20:49–64

    Article  Google Scholar 

  25. Loughran RJ, Elliott GL, Campbell BL, Shelly DJ (1988) Estimation of soil erosion from caesium-137 measurements in a small cultivated catchment in Australia. Appl Radiat Isot 39:1153–1157

    Article  Google Scholar 

  26. Walling DE, Bradley SB (1988) The use of caesium-137 measurements to investigate sediment delivery from cultivated areas in Devon, UK. International Association of Hydrological Sciences Publication no. 174. IAHS, Wallingford, pp 325–335

    Google Scholar 

  27. Walling DE, Quine TA (1991) The use of 137Cs measurements to investigate soil erosion on arable fields in the U.K.: potential applications and limitations. J Soil Sci 42:147–165

    Article  Google Scholar 

  28. Golosov VN, Panin AV, Markelov MV (1999) Chernobyl Cs-137 redistribution in the small basin of the Lokna river, Central Russia. Phys Chem Earth A 24:881–885

    Article  Google Scholar 

  29. Zapata F (ed) (2002) Handbook for the assessment of soil erosion and sedimentation using environmental radionuclides. Kluwer, Dordrecht, 219 p

    Google Scholar 

  30. Ritchie JC, Ritchie CA (2008) Bibliography of publications of 137Cesium studies related to erosion and sediment deposition. USDA-ARS Hydrology and Remote Sensing Laboratory Occasional Paper HRSL-2008-02

    Google Scholar 

  31. Wallbrink PJ, Murray AS (1996) Distribution of 7Be in soils under different surface cover conditions and its potential for describing soil redistribution processes. Water Resour Res 32:467–476

    Article  CAS  Google Scholar 

  32. Blake WH, Walling DE, He Q (1999) Fallout beryllium-7 as a tracer in soil erosion investigations. Appl Radiat Isot 51:599–605

    Article  CAS  Google Scholar 

  33. Walling DE, He Q, Blake W (1999) Use of Be-7 and Cs-137 measurements to document short- and medium-term rates of water-induced soil erosion on agricultural land. Water Resour Res 35:3865–3874

    Article  Google Scholar 

  34. Matisoff G, Bonniwell EC, Whiting PJ (2002) Soil erosion and sediment sources in an Ohio watershed using Beryllium-7, Cesium-137, and Lead-210. J Environ Qual 31:54–61

    Article  CAS  Google Scholar 

  35. Wilson CG, Matisoff G, Whiting PJ (2003) Short-term erosion rates from a Be-7 inventory balance. Earth Surf Process Land 28:967–977

    Article  CAS  Google Scholar 

  36. Wallbrink PJ, Murray AS (1996) Measuring soil loss using the inventory ratio of excess lead-210 to cesium-137. Soil Sci Soc Am J 60:1201–1208

    Article  CAS  Google Scholar 

  37. Walling DE, He Q, Quine TA (1995) Use of caesium-137 and lead-210 as tracers in soil erosion investigations. International Association of Hydrological Sciences Publication no. 229. IAHS, Wallingford, pp 163–172

    Google Scholar 

  38. Walling DE, He Q (1999) Using fallout lead-210 measurements to estimate soil erosion on cultivated land. Soil Sci Soc Am J 63:1404–1412

    Article  CAS  Google Scholar 

  39. Walling DE, Collins AL, Sichingabula HM (2003) Using unsupported lead-210 measurements to investigate soil erosion and sediment delivery in a small Zambian catchment. Geomorphology 52:193–213

    Article  Google Scholar 

  40. Ritchie JC, McHenry JR, Gill AC, Hawks PH (1972) Fallout Cs-137 in reservoir sediments. Health Phys 22:97–98

    Google Scholar 

  41. McIntyre SC, Naney JW (1991) Sediment deposition in a forested inland wetland with a steep-farmed watershed. J Soil Water Conserv 46:64–66

    Google Scholar 

  42. Craft CB, Casey WP (2000) Sediment and nutrient accumulation in floodplain and depressional freshwater wetlands of Georgia, USA. Wetlands 20:323–332

    Article  Google Scholar 

  43. DeLaune RD, Patrick WH Jr, Buresh RJ (1978) Sedimentation rates determined by 137Cs dating in a rapidly accreting salt marsh. Nature 275:532–533

    Article  CAS  Google Scholar 

  44. Oenema O, DeLaune RD (1988) Accretion rates in salt marshes in Eastern Scheldt, South-west Netherlands. Estuaries Coast Shelf Sci 26:379–394

    Article  CAS  Google Scholar 

  45. Walling DE, He Q (1998) The spatial variability of overbank sedimentation on river floodplains. Geomorphology 24:209–223

    Article  Google Scholar 

  46. Terry JP, Garimella S, Kostaschuk RA (2002) Rates of floodplain accretion in a tropical island river system impacted by cyclones and large floods. Geomorphology 42:171–182

    Article  Google Scholar 

  47. Krishnaswamy S, Lal D, Martin JM, Meybeck M (1971) Geochronology of lake sediments. Earth Planet Sci Lett 11:407–414

    Article  CAS  Google Scholar 

  48. Robbins JA, Edgington DN (1975) Determination of recent sedimentation rates in Lake Michigan with Pb-210 and Cs-137. Geochim Cosmochim Acta 39:285–304

    Article  CAS  Google Scholar 

  49. Appleby PG, Oldfield F (1978) The calculation of lead-210 dates assuming a constant rate of supply of unsupported lead-210 to the sediment. Catena 5:1–8

    Article  CAS  Google Scholar 

  50. Robbins JA, Edgington DN, Kemp LW (1978) Comparative 210Pb, 137Cs, and pollen geochronologies of sediments from Lake Ontario and Erie. Quatern Res 10:256–278

    Article  CAS  Google Scholar 

  51. Carroll J, Lerche I (2003) Sedimentary processes: quantification using radionuclides. Elsevier, Oxford

    Google Scholar 

  52. Krishnaswami S, Benninger LK, Aller RC, Von Damm KL (1980) Atmospherically-derived radionuclides as tracers of sediment mixing and accumulation in near-shore marine and lake sediments: evidence from 7Be, 210Pb and 239,240Pu. Earth Planet Sci Lett 47:307–318

    Article  CAS  Google Scholar 

  53. Blake WH, Walling DE, He Q (2002) Using cosmogenic beryllium-7 as a tracer in sediment budget investigations. Geogr Ann A Phys Geogr 84A:89–102

    Article  Google Scholar 

  54. Walling DE, He Q (2000) The global distribution of bomb-derived 137Cs reference inventories. Unpublished report to the International Atomic Energy Agency

    Google Scholar 

  55. Smith JT, Beresford NA (2005) Chernobyl: catastrophe and consequences. Praxis, Chichester, 305 p

    Google Scholar 

  56. Winkler R, Rosner G (2000) Seasonal and long-term variation of 210Pb concentration in air, atmospheric deposition rate and total deposition velocity in South Germany. Sci Total Environ 263:57–68

    Article  CAS  Google Scholar 

  57. Olsen CR, Larsen IL, Lowry PD, Cutshall NH, Todd JF, Wong GTF, Casey WH (1985) Atmospheric fluxes and marsh-soil inventories of 7Be and 210Pb. J Geophys Res 90:10487–10495

    Article  Google Scholar 

  58. Valles I, Camacho A, Ortega X (2009) Natural and anthropogenic radionuclides in airborne particulate samples collected in Barcelona (Spain). J Environ Radioactiv 100:102–107

    Article  CAS  Google Scholar 

  59. Preiss N, Mélières MA, Pourchet M (1996) A compilation of data on lead-210 concentration in surface air and fluxes at the air-surface and water-sediment interfaces. J Geophys Res 101:28847–28862

    Article  CAS  Google Scholar 

  60. Beks JP, Eisma D, van der Plicht J (1998) A record of atmospheric 210Pb deposition in the Netherlands. Sci Total Environ 222:35–44

    Article  CAS  Google Scholar 

  61. Turekian KK, Nozaki Y, Benninger LK (1977) Geochemistry of atmospheric radon and radon producers. Annu Rev Earth Planet Sci 5:227–255

    Article  CAS  Google Scholar 

  62. Yamamoto M, Sakaguchi A, Sasaki K, Hirose K, Igarashi Y, Kim CK (2006) 210 Pb and 7Be deposition: features of the Japan Sea side of Japan. J Environ Radioactiv 55:121–123

    Google Scholar 

  63. Baskaran M, Coleman CH, Santschi PH (1993) Atmospheric depositional fluxes of Be-7 and Pb-210 at Galveston and College Station, Texas. J Geophys Res 98:20555–20571

    Article  Google Scholar 

  64. Caillet S, Arpagaus P, Monna F, Dominik J (2001) Factors controlling Be-7 and Pb-210 atmospheric deposition as revealed by sampling individual rain events in the region of Geneva, Switzerland. J Environ Radioactiv 53:241–256

    Article  CAS  Google Scholar 

  65. Nijampurkur VN, Rao DK (1993) Polar fallout of radionuclides 32Si, 7Be and 210Pb and past accumulation rate of ice at Indian station, Dakshin Gangotri, East Antarctica. J Environ Radioactiv 21:107–117

    Article  Google Scholar 

  66. Kaste JM, Norton SA, Hess CT (2002) Environmental chemistry of beryllium-7. Rev Mineral Geochem 50:271–289

    Article  CAS  Google Scholar 

  67. Lal D, Malhotra PK, Peters B (1958) On the production of radioisotopes in the atmosphere by cosmic radiation and their application to meteorology. J Atmos Terr Phys 12:306–328

    Article  Google Scholar 

  68. Wallbrink PJ, Murray AS (1994) Fallout of 7Be over south eastern Australia. J Environ Radioactiv 25:213–228

    Article  CAS  Google Scholar 

  69. Harvey MJ, Matthews KM (1989) 7Be deposition in a high rainfall area of New Zealand. J Atmos Chem 8:299–306

    Article  CAS  Google Scholar 

  70. Turekian KK, Benninger LK, Dion EP (1983) 7Be and 210Pb total deposition fluxes at New Haven, Connecticut, and at Bermuda. J Geophys Res 88:5411–5415

    Article  CAS  Google Scholar 

  71. Todd JF, Wong GRF, Olsen CR, Larsen IL (1989) Atmospheric depositional characteristics of Beryllium-7 and Lead 210 along the southeastern Virginia Coast. J Geophys Res 94:11106–11116

    Article  Google Scholar 

  72. Peirson DH (1963) Beryllium-7 in air and rain. J Geophys Res 68:3831–3832

    Article  CAS  Google Scholar 

  73. Lal D, Nijampurkar VN, Rajagopalan G, Somayajulu BLK (1979) Annual fallout of 32Si, 210Pb, 22Na, 35S and 7Be in rains in India. Proc Indian Acad Sci 88A:29–40

    CAS  Google Scholar 

  74. Schumann G, Stoeppler M (1963) Beryllium 7 in the atmosphere. J Geophys Res 68:3827–3830

    Article  CAS  Google Scholar 

  75. Lee SC, Saleh AI, Babavali AD, Jonoby L, Kuroda PK (1985) Beryllium-7 deposition at Fayetteville, Arkansas and excess polonium-210 from the 1980 eruption of Mount St Helens. Geochem J 19:317–322

    Article  CAS  Google Scholar 

  76. Walton A, Fried RE (1962) The deposition of beryllium-7 and phosphorus-32 in precipitation at north temperate latitudes. J Geophys Res 67:5335–5340

    Article  CAS  Google Scholar 

  77. Othman I, Al-Masri MS, Hassan M (1998) Fallout of 7Be in Damascus city. J Radioanal Nucl Chem 238:187–191

    Article  CAS  Google Scholar 

  78. Duenas C, Fernandez MC, Carretero J, Liger E, Canete S (2002) Atmospheric deposition of 7Be at a coastal Mediterranean station. J Geophys Res 106:34059–34065

    Article  Google Scholar 

  79. Lomenick TF, Tamura T (1965) Naturally occurring fixation of cesium-137 on sediments of lacustrine origin. Soil Sci Soc Am Proc 29:383–386

    Article  CAS  Google Scholar 

  80. Squire HM, Middleton LJ (1966) Behavior of 137Cs in soils and pastures – a long term experiment. Radiat Bot 6:413–423

    Article  CAS  Google Scholar 

  81. Frissel MJ, Pennders R (1983) Models for the accumulation and migration of 90Sr, 137Cs, 239+240Pu and 241Am in the upper layer of soils. In: Coughtrey PJ, Bell JNB, Roberts TM (eds) Ecological aspects of radionuclide release. Blackwell, Oxford, pp 63–72

    Google Scholar 

  82. Jamsangton J, Parkpian P, Delaune RD, Jugsujinda A (2004) Retention of 137cesium in acid sulphate soils of South Central Thailand. Chem Ecol 20:241–256

    Article  CAS  Google Scholar 

  83. Romney EM, Childress JD (1965) Effects of beryllium in plants and soil. Soil Sci 100:210–217

    Article  CAS  Google Scholar 

  84. He Q, Walling DE (1996) Interpreting particle size effects in the absorption of 137Cs and unsupported 210Pb by mineral soils and sediments. J Environ Radioactiv 30:117–137

    Article  CAS  Google Scholar 

  85. Kaste JM, Norton SA, Fernandez IJ, Hess CT (1999) Delivery of cosmogenic beryllium-7 to forested ecosystems in Maine. Geol Soc Am Abstr 31:A305

    Google Scholar 

  86. Bettoli MG, Cantelli L, Degetto S, Tositti L, Tubertini O, Valcher S (1995) Preliminary investigations on 7Be as a tracer in the study of environmental processes. J Radioanal Nucl Chem 190:137–147

    Article  CAS  Google Scholar 

  87. Walling DE, Schuller P, Zhang Y, Iroumé A (2009) Extending the timescale for using beryllium-7 measurements to document soil redistribution by erosion. Water Resour Res 45:W02418. doi:10.1029/2008WR007143

    Article  CAS  Google Scholar 

  88. Tiessen KHD, Li S, Lobb DA, Mehuys GR, Rees HW, Chow TL (2009) Using repeated measurements of 137Cs and modelling to identify spatial patterns of tillage and water erosion within potato production in Atlantic Canada. Geoderma 153:104–118

    Article  Google Scholar 

  89. Walling DE, Quine TA (1991) Calibration of caesium-137 measurements to provide quantitative erosion rate data. Land Degrad Rehabil 2:161–175

    Article  Google Scholar 

  90. Walling DE, He Q (1999) Improved models for estimating soil erosion rates from cesium-137 measurements. J Environ Qual 28:611–622

    Article  CAS  Google Scholar 

  91. Walling DE, He Q, Appleby PC (2002) Conversion models for use in soil-erosion, soil-redistribution, and sedimentation investigations. In: Zapata F (ed) Handbook for the assessment of soil erosion and sedimentation using environmental radionuclides. Kluwer, Dordrecht, pp 111–164

    Google Scholar 

  92. Loughran RJ, Elliott GL (1996) Rates of soil erosion in Australia determined by the caesium-137 technique: a national reconnaissance survey. International Association of Hydrological Sciences Publication No. 236. IAHS, Wallingford, pp 275–282

    Google Scholar 

  93. Mitchell JK, Bubenzer GD, McHenry JR, Ritchie JC (1980) Soil loss estimation from fallout cesium-137 measurements. In: DeBoodt M, Gabriels D (eds) Assessment of erosion. Wiley, Chichester, pp 393–401

    Google Scholar 

  94. Van Oost K, Govers G, Van Muysen W (2003) A process-based conversion model for caesium-137 derived erosion rates on agricultural land: an integrated spatial approach. Earth Surf Process Land 28:187–207

    Article  CAS  Google Scholar 

  95. Quine TA, Walling DE, Govers G (1996) Simulation of radiocaesium redistribution on cultivated hillslopes using a mass-balance model: an aid to process interpretation and erosion rate estimation. In: Anderson MG, Brookes S (eds) Advances in hillslope processes. Wiley, Chichester, pp 561–588

    Google Scholar 

  96. Porto P, Walling DE, Ferro V (2001) Validating the use of caesium-137 measurements to estimate soil erosion rates in a small drainage basin in Calabria, southern Italy. J Hydrol 248:93–108

    Article  CAS  Google Scholar 

  97. Sutherland RA (1992) Caesium-137 estimates of erosion in agricultural areas. Hydrol Process 6:215–225

    Article  Google Scholar 

  98. Yan P, Dong Z, Dong G, Zhang X, Zhang Y (2001) Preliminary results of using 137Cs to study wind erosion in the Qinghai-Tibet Plateau. J Arid Environ 47:443–452

    Article  Google Scholar 

  99. Chappell A, Warren M (2003) Spatial scales of Cs-137-derived soil flux by wind in a 25 km2 arable area of eastern England. Catena 52:209–234

    Article  CAS  Google Scholar 

  100. Chappell A, Warren A, Oliver M, Charlton M (1998) The utility of 137Cs for measuring soil redistribution rates in southwest Niger. Geoderma 81:313–337

    Article  Google Scholar 

  101. Basher LR, Webb TH (1997) Wind erosion rates on terraces in the Mackenzie Basin. J R Soc NZ 27:499–512

    Article  Google Scholar 

  102. Chappell A (1999) The limitations of using Cs-137 for estimating soil redistribution in semi-arid environments. Geomorphology 29:135–152

    Article  Google Scholar 

  103. Schuller P, Walling DE, Sepulveda A, Trumper RE, Rouanet JL, Pino I, Castillo A (2004) Use of Cs-137 measurements to estimate changes in soil erosion rates associated with changes in soil management practices on cultivated land. Appl Radiat Isot 60:759–766

    Article  CAS  Google Scholar 

  104. Schuller P, Walling DE, Sepulveda A, Castillo A, Pino I (2007) Changes in soil erosion associated with the shift from conventional tillage to a no-tillage system, documented using Cs-137 measurements. Soil Tillage Res 94:183–192

    Article  Google Scholar 

  105. Walling DE, Zhang Y, He Q Models for deriving estimates of erosion and deposition rates from fallout radionuclide (caesium-137, excess lead-210 and beryllium-7) measurements and the development of user-friendly software for model implementation. In: IAEA TECDOC D1.50.08. IAEA, Vienna, (in press)

    Google Scholar 

  106. Schuller P, Iroumé A, Walling DE, Mancilla HB, Castillo A, Trumper RE (2006) Use of beryllium-7 to document soil redistribution following forest harvesting operations. J Environ Qual 35:1756–1763

    Article  CAS  Google Scholar 

  107. Sepúlveda A, Schuller P, Walling DE (2008) Use of 7Be to document erosion associated with a short period of extreme rainfall. J Environ Radioactiv 99:35–49

    Article  CAS  Google Scholar 

  108. Olsson IU (1986) Radiometric dating. In: Berglund BE (ed) Handbook of holocene palaeoecology and palaeohydrology. Wiley, Chichester, pp 273–312

    Google Scholar 

  109. Appleby PG (2002) Chronostratigraphic techniques in recent sediments. In: Last WM, Smol JP (eds) Tracing environmental change using lake sediments, vol 1. Kluwer, Dordrecht, pp 171–203

    Chapter  Google Scholar 

  110. Erten HN (1997) Radiochronology of lake sediments. Pure Appl Chem 69:71–76

    Article  CAS  Google Scholar 

  111. Walling DE, He Q (1992) Interpretation of cesium-137 profile in lacustrine and other sediments - The role of catchment derived inputs. Hydrobiologia 235(236):219–230

    Article  Google Scholar 

  112. Walling DE, He Q (1993) Toward improved interpretation of caesium-137 profile in lake sediments. In: McManus J, Duck R (eds) Geomorphology and sedimentology of lakes and reservoirs. Wiley, Chichester, pp 31–53

    Google Scholar 

  113. Walling DE (2010) Using fallout radionuclides to investigate erosion and sediment delivery: some recent advances. In: Sediment dynamics for a changing future, Proceedings of the Warsaw symposium, IAHS Publication no. 337. IAHS, Wallingford, pp 3–16

    Google Scholar 

  114. Golosov VN, Belyaev VR, Markelov MV, Kislenko KS (2010) Overbank sedimentation rates on the flood plains of small rivers in Central European Russia. In: Sediment dynamics for a changing future, Proceedings of the Warsaw symposium, IAHS Publication no. 337. IAHS, Wallingford, pp 129–136

    Google Scholar 

  115. Allison MA, Kuehl SA, Martin TC, Hassan A (1998) Importance of flood-plain sedimentation for river sediment budgets and terrigenous input to the oceans: insights from the Brahmaputra–Jamuna river. Geology 26:175–178

    Article  Google Scholar 

  116. Walling DE, Owens PN, Leeks GJL (1998) The role of channel and floodplain storage in the suspended sediment budget of the River Ouse, Yorkshire, UK. Geomorphology 22:225–242

    Article  Google Scholar 

  117. Walling DE, Owens PN, Leeks GJL (1999) Rates of contemporary overbank sedimentation and sediment storage on the floodplains of the main channel systems of the Yorkshire Ouse and the River Tweed, UK. Hydrol Process 13:993–1009

    Article  Google Scholar 

  118. Walling DE, He Q (1997) Use of fallout 137Cs in investigations of overbank sediment deposition on river floodplains. Catena 29:263–282

    Article  CAS  Google Scholar 

  119. Hughes AO, Olley J, Croke JC, Webster IT (2009) Determining floodplain sedimentation rates using 137Cs in a low fallout environment dominated by channel- and cultivation-derived sediment inputs, central Queensland, Australia. J Environ Radioactiv 100:858–865

    Article  CAS  Google Scholar 

  120. Appleby PG, Oldfield F (1983) The assessment of 210Pb data from sites with varying sediment accumulation rates. Hydrobiologia 103:29–35

    Article  CAS  Google Scholar 

  121. Robbins JA (1978) Geochemistry and geophysical application of radioactive lead. In: Nriagu JO (ed) The Biochemistry of lead in the environment. Elsevier, Amsterdam, pp 285–393

    Google Scholar 

  122. He Q, Walling DE (1996) Use of fallout Pb-210 measurements to investigate longer-term rates and patterns of overbank sediment deposition on the floodplains of lowland rivers. Earth Surf Process Land 21:141–154

    Article  CAS  Google Scholar 

  123. Lambert CP, Walling DE (1987) Floodplain sedimentation: a preliminary investigation of contemporary deposition within the lower reaches of the River Culm, Devon, UK. Geogr Ann 69A:393–404

    Article  Google Scholar 

  124. Liu J, Carroll J, Lerche I (1991) A technique for disentangling temporal source and sediment variations from radioisotope measurements with depth. Nucl Geophys 5:31–45

    Google Scholar 

  125. Aalto R, Maurice-Bourgoin L, Dunne T, Montgomery DR, Nittrouer CA, Guyot J-L (2003) Episodic sediment accumulation on Amazonian flood plains influenced by El Niño/southern oscillation. Nature 425:493–497

    Article  CAS  Google Scholar 

  126. Aalto R, Dietrich W (2005) Sediment accumulation determined with 210Pb geochronology for Strickland River flood plains. In: Sediment budgets I, Proceedings of the Foz do Iguaçu Symposium, Brazil, April 2005. International Association of Hydrological Sciences Publication No. 291. IAHS, Wallingford, pp 303–309

    Google Scholar 

  127. Canuel EA, Martens CS, Benninger LK (1980) Seasonal variations in the 7Be activity in the sediments of Cape Lookout Bight. Geochim Cosmochem Acta 54:237–245

    Article  Google Scholar 

  128. Dibb JE, Rice DL (1989) Temporal and spatial distribution of beryllium-7 in the sediments of Chesapeake Bay. Estuar Coast Shelf Sci 28:395–406

    Article  CAS  Google Scholar 

  129. Fitzgerald SA, Klump JV, Swarzenski PW, Mackenzie RA, Richards KD (2001) Beryllium-7 as a tracer of short-term sediment deposition and resuspension in the Fox River, Wisconsin. Environ Sci Technol 35:300–305

    Article  CAS  Google Scholar 

  130. Fisher GB, Magilligan FJ, Kaste JM, Nislow KH (2010) Constraining the timescales of sediment sequestration with large woody debris using cosmogenic 7Be. J Geophys Res 115:F01013. doi:10.1029/2009JF001352

    Article  CAS  Google Scholar 

  131. Walling DE (2005) Tracing suspended sediment sources in catchments and river systems. Sci Total Environ 344:159–184

    Article  CAS  Google Scholar 

  132. Collins AL, Walling DE, Leeks GJL (1998) The use of composite fingerprints to determine the provenance of the contemporary suspended sediment load transported by rivers. Earth Surf Process Land 23:31–52

    Article  Google Scholar 

  133. Walling DE, Woodward JC (1995) Tracing sources of suspended sediment in river basins. Mar Freshwater Res 46:327–336

    Google Scholar 

  134. Walling DE, Owens PN, Leeks GJL (1999) Fingerprinting suspended sediment sources in the catchment of the River Ouse, Yorkshire, UK. Hydrol Process 13:955–975

    Article  Google Scholar 

  135. Walling DE, Woodward JC (1992) Use of radiometric fingerprints to derive information on suspended sediment sources. International Association of Hydrological Sciences Publication No. 210. IAHS, Wallingford, pp 153–164

    Google Scholar 

  136. Collins AL, Walling DE, Leeks GJL (1997) Source type ascription for fluvial suspended sediment based on a quantitative composite fingerprinting technique. Catena 29:1–27

    Article  CAS  Google Scholar 

  137. Collins AL, Walling DE, Webb L, King P (2010) Apportioning catchment scale sediment sources using a modified composite fingerprinting technique incorporating property weightings and prior information. Geoderma 155:249–261

    Article  Google Scholar 

  138. Palmer MJ, Douglas GB (2008) A Bayesian statistical model for end member analysis of sediment geochemistry, incorporating spatial dependences. Appl Stat 57:313–327

    Google Scholar 

  139. Wallbrink PJ, Murray AS (1993) The use of fallout radionuclide as indicators of erosion processes. Hydrol Process 7:297–304

    Article  Google Scholar 

  140. Yang M-Y, Walling DE, Tian J-L, Liu P-L (2006) Partitioning the contributions of sheet and rill erosion using Beryllium-7 and Cesium-137. Soil Sci Soc Am J 70:1579–1590

    Article  CAS  Google Scholar 

  141. Whiting PJ, Bonniwell EC, Matisoff G (2001) Depth and areal extent of sheet and rill erosion based on radionuclides in soils and suspended sediment. Geology 29:1131–1134

    Article  CAS  Google Scholar 

  142. He Q, Owens P (1995) Determination of suspended sediment provenance using caesium-137, unsupported lead-210 and radium-226: a numerical mixing model approach. In: Foster IDL, Gurnell AM, Webb BW (eds) Sediment and water quality in river catchments. Wiley, Chichester, pp 207–227

    Google Scholar 

  143. Whiting PJ, Matisoff G, Fornes W, Soster F (2005) Suspended sediment sources and transport distances in the Yellowstone basin. Geol Soc Am Bull 117:515–529

    Article  Google Scholar 

  144. Olsen CR, Thein M, Larsen IL, Mulholland PJ, Cutshall NH, Byrd JT, Windom HL (1989) Plutonium, lead-210, and carbon isotopes in the Savannah estuary; Riverborne versus marine sources. Environ Sci Technol 23:1475–1481

    Article  CAS  Google Scholar 

  145. Salant NL, Renshaw CE, Magilligan FJ, Kaste JM, Nislow KH, Heimsath AM (2006) The use of short-lived radionuclides to quantify transitional bed material transport in a regulated river. Earth Surf Process Land 32:509–524

    Article  CAS  Google Scholar 

  146. Phillips JM, Russell MA, Walling DE (2000) Time-integrated sampling of fluvial suspended sediment: a simple methodology for small catchments. Hydrol Process 14:2589–2602

    Article  Google Scholar 

  147. Ongley ED, Thomas RL (1989) Dewatering suspended solids by continuous-flow centrifugation: practical considerations. Hydrol Process 3:255–260

    Article  Google Scholar 

  148. Owens PN, Walling DE (1996) Spatial variability of caesium-137 inventories at reference sites: an example from two contrasting sites in England and Zimbabwe. Appl Radiat Isot 47:699–707

    Article  CAS  Google Scholar 

  149. Sutherland RA (1994) Spatial variability of 137Cs and the influence of sampling on estimates of sediment redistribution. Catena 21:57–71

    Article  Google Scholar 

  150. Sutherland RA (1996) Caesium-137 soil sampling and inventory variability in reference samples; literature survey. Hydrol Process 10:34–54

    Article  Google Scholar 

  151. Campbell BL, Loughran RJ, Elliott GL (1988) A method for determining sediment budgets using caesium-137. International Association of Hydrological Sciences Publication No. 174. IAHS, Wallingford, pp 171–179

    Google Scholar 

  152. Zaborska A, Caroll J, Papucci C, Pempkowiak J (2007) Intercomparison of alpha and gamma spectrometry techniques used in 210Pb geochronology. J Environ Radioactiv 93:38–50

    Article  CAS  Google Scholar 

  153. Wallbrink PJ, Walling DE, He Q (2002) Radionuclide measurement using HPGe gamma spectrometry. In: Zapata P (ed) Handbook for the assessment of soil erosion and sedimentation using environmental radionuclides. Kluwer, Dordrecht, pp 67–96

    Google Scholar 

  154. Canberra (2010) Catalogue. http://www.Canberra.com

  155. He Q, Walling DE (2000) Calibration of a field-portable gamma detector to obtain in situ measurements of the 137Cs inventories in cultivated and floodplain sediments. Appl Radiat Isot 52:865–872

    Article  CAS  Google Scholar 

  156. Benke RR, Kearfott KJ (2001) An improved in situ method for determining depth distributions of gamma-ray emitting radionuclides. Nucl Instrum Meth Phys Res A 463:393–412

    Article  CAS  Google Scholar 

  157. Golosov VN, Walling DE, Kvasnikova EV, Stukin ED, Nikolaev AN, Panin AV (2000) Application of a field-portable scintillation detector for studying the distribution of 137Cs inventories in a small basin in central Russia. J Environ Radioactiv 48:79–94

    Article  CAS  Google Scholar 

  158. Walling DE, Zhang Y (2010) A national assessment of soil erosion based on caesium-137 measurements. Adv Geoecol 41:89–97

    Google Scholar 

  159. Walling DE, Owens PN (2002) The role of floodplain sedimentation in catchment sediment and contaminant budgets. In: The structure and management implications of fluvial sedimentary systems, Proceedings of the international symposium held at Alice Springs, September 2002, IAHS Publication 276. IAHS, Wallingford, pp 407–416

    Google Scholar 

  160. Walling DE (2000) Linking land use, erosion and sediment yields in river basins. Hydrobiologia 410:223–240

    Article  Google Scholar 

  161. Walling DE, Collins AL, McMellin GK (2003) A reconnaissance survey of the source of interstitial fine sediment recovered from salmonid spawning gravels in England and Wales. Hydrobiologia 497:91–108

    Article  Google Scholar 

  162. Zhang X, Walling DE, Quine TA, Wen A (1997) Use of reservoir deposits and Cs-137 measurements to investigate the erosional response of a small drainage basin in the rolling loess plateau region of China. Land Degrad Dev 8:1–16

    Article  CAS  Google Scholar 

  163. Walling DE (2006) Tracing versus monitoring: new challenges and opportunities in erosion and sediment delivery research. In: Owens PN, Collins AJ (eds) Soil erosion and sediment redistribution in river catchments. CABI, Wallingford, pp 13–27

    Chapter  Google Scholar 

  164. Ketterer ME, Watson BR, Matisoff G, Wilson CG (2002) Rapid dating of recent aquatic sediments using Pu activities and 240Pu/239Pu as determined by quadrupole inductively coupled plasma mass spectrometry. Environ Sci Technol 36:1307–1311

    Article  CAS  Google Scholar 

  165. Everett SE, Tims SG, Hancock GJ, Bartley R, Fifield LK (2008) Comparison of Pu and 137Cs as tracers of soil and sediment transport in a terrestrial environment. J Environ Radioactiv 99:383–393

    Article  CAS  Google Scholar 

  166. Tims SG, Everett SE, Fifield LK, Hancock GJ, Bartley R (2010) Plutonium as a tracer of soil and sediment movement in the Herbert River, Australia. Nucl Instrum Meth Phys Res B 268:1150–1154

    Article  CAS  Google Scholar 

  167. Wu FC, Zheng J, Liao H, Yamada M (2010) Vertical distributions of plutonium and 137Cs in lacustrine sediments in northwestern China: quantifying sediment accumulation rates and source identifications. Environ Sci Technol 44:2911–2917

    Article  CAS  Google Scholar 

  168. Kim CS, Lee MH, Kim CK, Kim KH (2008) 90Sr, 137Cs, 239,240Pu and 238Pu concentrations in surface soils of Korea. J Environ Radioactiv 40:75–88

    Article  Google Scholar 

  169. Van Pelt RS, Ketterer M, Zobeck TM, Ritchie JC (2009) Anthropogenic radioisotopes to estimate rates of soil redistribution by wind [abstract]. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America. 1–5 Nov 2009. Pittsburgh. Abstract No. 2009.55438

    Google Scholar 

  170. Schimmack W, Auerswald K, Bunzl K (2002) Estimation of soil erosion and deposition rates at an agricultural site in Bavaria, Germany, as derived from fallout radiocesium and plutonium as tracers. Naturwissenschaften 89:43–46

    Article  Google Scholar 

  171. Hancock GJ, Leslie C, Everett SE, Tims SG, Brunskill GJ, Haese R Plutonium as a chronomarker in Australian and New Zealand sediments: a comparison with 137Cs. J Environmental Radioactivity (in press)

    Google Scholar 

  172. Amos KJ, Croke JC, Timmers H, Owens PN, Thompson C (2009) The application of caesium-137 measurements to investigate floodplain deposition in a large semi-arid catchment in Queensland, Australia: a low-fallout environment. Earth Surf Process Land 34:515–529

    Article  CAS  Google Scholar 

  173. Schimmack W, Auerswald K, Bunzl K (2001) Can 239+240Pu replace 137Cs as an erosion tracer in agricultural landscapes contaminated with Chernobyl fallout? J Environ Radioactiv 53:41–57

    Article  CAS  Google Scholar 

  174. Ketterer ME, Hafer KM, Mietelski JW (2004) Resolving Chernobyl vs global fallout contributions in soils from Poland using Plutonium atom ratios measured by inductively coupled plasma mass spectrometry. J Environ Radioactiv 73:183–201

    Article  CAS  Google Scholar 

  175. Rawlins BG, Scheib C, Beamish D, Webster R, Tyler AN, Young ME (2010) Landscape-scale controls on the spatial distribution of caesium-137: a case study across Northern Ireland. Earth Surf Process Landforms. doi:10.1002/esp. 2026

    Google Scholar 

  176. Scheib C, Beamish D (2010) High spatial resolution observations of 137Cs in northern Britain and Ireland from airborne geophysical survey. J Environ Radioactiv 101:670–680

    Article  CAS  Google Scholar 

  177. Blake WH, Wallbrink PJ, Wilkinson S, Humphreys GS, Doerr SH, Shakesby RA, Tomkins K (2009) Deriving hillslope sediment budgets in wildfire-affected forests using fallout radionuclide tracers. Geomorphology 104:105–116

    Article  Google Scholar 

  178. Zhang X, Walling DE (2005) Characterizing land surface erosion from cesium-137 profiles in lake and reservoir sediments. J Environ Qual 34:514–523

    Article  CAS  Google Scholar 

  179. Owens PN, Walling DE, He Q, Shanahan J, Foster IDL (1997) The use of caesium-137 measurements to establish a sediment budget for the Start catchment, Devon, UK. Hydrol Sci J 42:405–423

    Article  Google Scholar 

  180. Walling DE, Collins AL, Sichingabula HM, Leeks GJL (2001) Integrated assessment of catchment sediment budgets. Land Degrad Dev 12:387–415

    Article  Google Scholar 

  181. Walling DE, Collins AL, Jones PA, Leeks GJL, Old G (2006) Establishing fine-grained sediment budgets for the Pang and Lambourn LOCAR catchments. J Hydrol 330:126–141

    Article  Google Scholar 

  182. Walling DE, Collins AL (2008) The catchment sediment budget as a management tool. Environ Sci Policy 11:136–143

    Article  Google Scholar 

Books and Reviews

  • Carroll J, Lerche I (2003) Sedimentation processes: quantification using radionuclides. Elsevier, Amsterdam

    Google Scholar 

  • Froehlich K (ed) (2010) Environmental radionuclides: tracers and timers of terrestrial processes. Elsevier, Amsterdam

    Google Scholar 

  • Garcia MH (ed) (2008) Sedimentation engineering: processes, measurements, modelling and practice. American Society of Civil Engineers, Reston

    Google Scholar 

  • Montgomery DR (2007) Dirt: the erosion of civilisations. University of California Press, Berkeley/Los Angeles

    Google Scholar 

  • Morgan RPC (2005) Soil erosion and conservation. Wiley-Blackwell, Oxford

    Google Scholar 

  • Owens PN (ed) (2008) Sustainable management of sediment resources: sediment management at the river basin scale, vol 4. Elsevier, Amsterdam

    Google Scholar 

  • Owens PN, Collins AJ (eds) (2006) Soil erosion and sediment redistribution in river catchments. CABI, Wallingford

    Google Scholar 

  • Zapata F, Nguyen M-L (2009) Soil erosion and sedimentation studies using environmental radionuclides. In: Froehlich K (ed) Environmental radionuclides: tracers and timers of terrestrial processes. Elsevier, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Desmond E. Walling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Cite this entry

Walling, D.E. (2012). Fallout Radionuclides and the Study of Erosion and Sedimentation . In: Meyers, R.A. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0851-3_288

Download citation

Publish with us

Policies and ethics