Skip to main content

Geothermal Energy , Geology and Hydrology of

  • Reference work entry
Book cover Encyclopedia of Sustainability Science and Technology
  • 656 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 6,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Core:

The central portion of the Earth that is composed of high density metallic, solid, and liquid components.

Crust:

The outer layer of the Earth composed of low to moderate density silicates and other minerals and within which the radioactive elements K, Rb, U, and Th are concentrated.

Direct use:

An application that uses the heat from a geothermal resource to accomplish heating, cooling and drying without converting thermal energy to another energy form.

Enhanced geothermal systems:

A deep geothermal system in which the porosity and permeability have been artificially enhanced through engineering methods to increase the mass flux of fluid that can be pumped through the reservoir.

Heat flow:

Strictly, the movement of thermal energy via diffusive conduction. Heat flow, as measured, is also a reflection of advective and convective transport.

Heat pump:

A device for transferring heat from one location to another.

Hydrology:

The scientific discipline that studies the flow of fluids in the crust.

Magma:

Molten rock that is one of the primary means for transferring heat to near-surface environments.

Mantle:

The interior portion of the Earth between the core and crust within which convective flow of material transfers heat to the crust.

Permeability:

The measurement or property of a medium that describes the ease with which a fluid will pass through the pores or fractures of the medium.

Plate tectonics:

The conceptual framework that provides a unifying principle describing the dynamic processes within the Earth.

Bibliography

Primary Literature

  1. Cataldi R (1993) Review of historiographic aspects of geothermal energy in the Mediterranean and Mesoamerican areas prior to the modern age. Geoth Heat Cent Bull 15:13–16

    Google Scholar 

  2. Buffon GL (1778) Histoire naturelle, générale et particulière. Imprimerie Royale, Paris

    Google Scholar 

  3. Dickson MH, Fanelli M (2006) Geothermal background. In: Dickson MH, Fanelli M (eds) Geothermal energy: utilization and technology. Earthscan, London

    Google Scholar 

  4. Brush SG (1979) Nineteenth-century debates about the inside of the earth: solid, liquid or gas? Ann Sci 36:225–254

    Article  Google Scholar 

  5. Van Schmus WR (1995) Natural radioactivity of the crust and mantle. In: Ahrens TJ (ed) Global earth physics. American Geophysical Union, Washington, DC, pp 283–291

    Chapter  Google Scholar 

  6. Göpel C, Manhés G, Allégre CJ (1994) U-Pb systematics of phosphates from equilibrated ordinary chondrites. Earth Planet Sci Lett 121:153–171

    Article  Google Scholar 

  7. Allégre CJ, Manhés G, Göpel C (1995) The age of the Earth. Geochim Cosmochim Acta 59:1445–1456

    Article  Google Scholar 

  8. Wetherill GW (1990) Formation of the Earth. Annu Rev Earth Planet Sci 18:205–256

    Article  Google Scholar 

  9. Canup RM, Agnor C (2001) In: Canup RM, Righter K (eds) Origin of Earth and moon. Cambridge University Press, Cambridge, pp 1839–1848

    Google Scholar 

  10. Chambers JE (2001) Making more terrestrial planets. Icarus 152:205–224

    Article  Google Scholar 

  11. Kortenkamp SJ, Wetherill GW, Inaba S (2001) Runaway growth of planetary embryos facilitated by massive bodies in a protoplanetary disk. Science 293:1127–1129

    Article  CAS  Google Scholar 

  12. Kleine T, Münker C, Mezger K, Palme H (2002) Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf-W chronometry. Nature 418:952–955

    Article  CAS  Google Scholar 

  13. Yin Q, Jacobsen SB, Yamashita K, Blichert-Toft J, Te’louk P, Albarede F (2002) A short timescale for terrestrial planet formation from Hf–W chronometry of meteorites. Nature 418:949–952

    Article  CAS  Google Scholar 

  14. Stein CA (1995) Heat flow in the Earth. In: Ahrens TJ (ed) Global earth physics. American Geophysical Union, Washington, DC, pp 144–158

    Chapter  Google Scholar 

  15. Shih K-G (1971) Temperature production in the continental crust due to radioactive heat production. Pure Appl Geophys 90:115–125

    Article  Google Scholar 

  16. Alfé D, Gillian MJ, Price GD (2007) Temperature and composition of the Earth’s core. Contemp Phys 48:63–80

    Article  Google Scholar 

  17. Anderson DL (1989) Theory of the Earth. Blackwell, Boston

    Google Scholar 

  18. Yamazaki D, Karato S-I (2001) Some mineral physics constraints on the rheology and geothermal structure of Earth’s lower mantle. Am Mineralog 86:385–391

    CAS  Google Scholar 

  19. Isacks B, Oliver J, Sykes LR (1968) Seismology and the new global tectonics. J Geophys Res 73:5855–5899

    Article  Google Scholar 

  20. Glen W (1982) The road to Jaramillo: critical years of the revolution in earth science. Stanford University Press, Stanford

    Google Scholar 

  21. CGEC (California Geothermal Energy Collaborative) (2006) California geothermal fields and existing power plants, Fact Sheet

    Google Scholar 

  22. Hart SR, Glassley WE, Karig DE (1972) Basalts and sea-floor spreading behind the Mariana island arc. Earth Planet Sci Lett 15:12–18

    Article  CAS  Google Scholar 

  23. Hirth G, Kohlstedt D (2003) Rheology of the upper mantle and the mantle wedge: a view from the experimentalists. Geophys Monograph 138:83–105, American Geophysical Union, Washington, DC

    Article  CAS  Google Scholar 

  24. Kennedy BM, Kharaka YK, Evans WC, Ellwood A, DePaolo DJ, Thordsen J, Ambats G, Mariner RH (1997) Mantle fluids in the San Andreas fault system, California. Science 278:1278–1281

    Article  CAS  Google Scholar 

  25. Lachenbruch AH (1968) Preliminary geothermal model of the Sierra Nevada. J Geophys Res 73:6977–6989

    Article  Google Scholar 

  26. Farrar CD, Sorey ML, Roeloffs E, Galloway DL, Howle JF, Jacobson R (2003) Inferences on the hydrothermal system beneath the resurgent dome in Long Valley Caldera, east-central California, USA, from recent pumping tests and geochemical sampling. J Volcanol Geoth Res 127:305–328

    Article  CAS  Google Scholar 

  27. Bear J (1993) Modeling flow and contaminant transport in fractured rocks. In: Bear J, Tsang C-F, de Marsily G (eds) Flow and contaminant transport in fractured rock. Academic, New York

    Google Scholar 

  28. Bear J (1979) Hydraulics of groundwater. McGraw-Hill, New York

    Google Scholar 

  29. Batu V (1998) Aquifer hydraulics. Wiley, New York

    Google Scholar 

  30. Lee CH, Farmer IW (1990) A simple method of estimating rock mass porosity and permeability. Int J Min Geol Eng 8:57–65

    Article  Google Scholar 

  31. Kozeny J (1927) Über kapillare Leitung des Wassers im Boden. Sitzungsber. Akad Wissenschaft Wien 136:271–306

    Google Scholar 

  32. Carman PC (1937) Fluid flow through a granular bed. Trans Inst Chem Eng Lond 15:150–156

    CAS  Google Scholar 

  33. Carman PC (1956) Flow of gases through porous media. Butterworths, London

    Google Scholar 

  34. Björnsson G, Bodvarsson G (1990) A survey of geothermal reservoir properties. Geothermics 19:17–27

    Article  Google Scholar 

  35. Williams CF (2007) Updated methods for estimating recovery factors for geothermal resources. In: Proceedings of the 32nd Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California

    Google Scholar 

  36. Smith MC (1983) A history of hot dry rock geothermal energy systems. J Volcanol Geoth Res 15:1–20

    Article  CAS  Google Scholar 

  37. Tester JW, Brown DW, Potter RM (1989) Hot dry rock geothermal energy – a new energy agenda for the 21st Century. Los Alamos National Laboratory report LA-11514-MS

    Google Scholar 

  38. Duchane D, Brown D (2002) Hot dry rock (HDR) geothermal energy research and development at Fenton Hill, New Mexico. Geo-Heat Center Bull 23(4):13–19

    Google Scholar 

  39. Tester JW, Anderson BJ, Batchelor AS, Blackwell DD, DiPippio R, Drake EM, Garnish J, Livesay B, Moore MC, Nichols K, Petty S, Toksoz MN, Veatch RW Jr (2006) The future of geothermal energy. MIT Press, Boston

    Google Scholar 

  40. Lund JW, Freeston DH, Boyd TL (2005) Direct application of geothermal energy. 2005 worldwide review. Geothermics 34:690–727

    Article  Google Scholar 

  41. Ochsner K (2008) Geothermal heat pumps. Earthscan, London

    Google Scholar 

Books and Reviews

  • DiPippo R (2008) Geothermal power plants, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Duffield WA, Sass JH (2003) Geothermal energy – clean power from the Earth’s heat. U.S. Geological Survey Circular 1249

    Google Scholar 

  • Glassley WE (2010) Geothermal energy: renewable energy and the environment. Taylor and Francis, Boca Raton

    Book  Google Scholar 

  • Krauskopf KB, Bird DK (2003) Introduction to geochemistry, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  • Reynolds JM (1997) An introduction to applied and environmental geophysics. Wiley, New York

    Google Scholar 

  • Ryback L, Muffler LJP (1979) Geothermal systems: principles and case histories. Wiley, New York

    Google Scholar 

  • Williams CF, Reed MJ, Mariner RH (2008) A review of methods by the U.S. Geological Survey in the assessment of identified geothermal resources. U.S. Geological Survey Open File Report 2008-1296

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William E. Glassley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Cite this entry

Glassley, W.E. (2012). Geothermal Energy , Geology and Hydrology of. In: Meyers, R.A. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0851-3_230

Download citation

Publish with us

Policies and ethics