Encyclopedia of Sustainability Science and Technology

2012 Edition
| Editors: Robert A. Meyers

Geothermal Energy, Geology and Hydrology of

Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-0851-3_230

Definition of the Subject

Geothermal energy is a ubiquitous renewable energy resource that is available virtually anywhere on the Earth. Surface manifestations of this energy resource are, however, diverse and irregularly distributed. The most obvious and dramatic examples of geothermal energy are volcanoes. Less dramatic but equally unambiguous are geysers, hot springs, and warm pools, all of which are striking by their seemingly endless outflow of warm water from the subsurface. More subtle indications of geothermal energy are measurements in boreholes, mines, and wells that inevitably show that the deeper one goes below the surface, the warmer is the rock. All of these examples unambiguously document that heat is present in the subsurface, and it is this energy resource that geothermal applications utilize.

Access to geothermal resources varies from place to place, reflecting a complex interplay of geological and hydrological processes that have developed over millions of years. As...

This is a preview of subscription content, log in to check access

Bibliography

Primary Literature

  1. 1.
    Cataldi R (1993) Review of historiographic aspects of geothermal energy in the Mediterranean and Mesoamerican areas prior to the modern age. Geoth Heat Cent Bull 15:13–16Google Scholar
  2. 2.
    Buffon GL (1778) Histoire naturelle, générale et particulière. Imprimerie Royale, ParisGoogle Scholar
  3. 3.
    Dickson MH, Fanelli M (2006) Geothermal background. In: Dickson MH, Fanelli M (eds) Geothermal energy: utilization and technology. Earthscan, LondonGoogle Scholar
  4. 4.
    Brush SG (1979) Nineteenth-century debates about the inside of the earth: solid, liquid or gas? Ann Sci 36:225–254CrossRefGoogle Scholar
  5. 5.
    Van Schmus WR (1995) Natural radioactivity of the crust and mantle. In: Ahrens TJ (ed) Global earth physics. American Geophysical Union, Washington, DC, pp 283–291CrossRefGoogle Scholar
  6. 6.
    Göpel C, Manhés G, Allégre CJ (1994) U-Pb systematics of phosphates from equilibrated ordinary chondrites. Earth Planet Sci Lett 121:153–171CrossRefGoogle Scholar
  7. 7.
    Allégre CJ, Manhés G, Göpel C (1995) The age of the Earth. Geochim Cosmochim Acta 59:1445–1456CrossRefGoogle Scholar
  8. 8.
    Wetherill GW (1990) Formation of the Earth. Annu Rev Earth Planet Sci 18:205–256CrossRefGoogle Scholar
  9. 9.
    Canup RM, Agnor C (2001) In: Canup RM, Righter K (eds) Origin of Earth and moon. Cambridge University Press, Cambridge, pp 1839–1848Google Scholar
  10. 10.
    Chambers JE (2001) Making more terrestrial planets. Icarus 152:205–224CrossRefGoogle Scholar
  11. 11.
    Kortenkamp SJ, Wetherill GW, Inaba S (2001) Runaway growth of planetary embryos facilitated by massive bodies in a protoplanetary disk. Science 293:1127–1129CrossRefGoogle Scholar
  12. 12.
    Kleine T, Münker C, Mezger K, Palme H (2002) Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf-W chronometry. Nature 418:952–955CrossRefGoogle Scholar
  13. 13.
    Yin Q, Jacobsen SB, Yamashita K, Blichert-Toft J, Te’louk P, Albarede F (2002) A short timescale for terrestrial planet formation from Hf–W chronometry of meteorites. Nature 418:949–952CrossRefGoogle Scholar
  14. 14.
    Stein CA (1995) Heat flow in the Earth. In: Ahrens TJ (ed) Global earth physics. American Geophysical Union, Washington, DC, pp 144–158CrossRefGoogle Scholar
  15. 15.
    Shih K-G (1971) Temperature production in the continental crust due to radioactive heat production. Pure Appl Geophys 90:115–125CrossRefGoogle Scholar
  16. 16.
    Alfé D, Gillian MJ, Price GD (2007) Temperature and composition of the Earth’s core. Contemp Phys 48:63–80CrossRefGoogle Scholar
  17. 17.
    Anderson DL (1989) Theory of the Earth. Blackwell, BostonGoogle Scholar
  18. 18.
    Yamazaki D, Karato S-I (2001) Some mineral physics constraints on the rheology and geothermal structure of Earth’s lower mantle. Am Mineralog 86:385–391Google Scholar
  19. 19.
    Isacks B, Oliver J, Sykes LR (1968) Seismology and the new global tectonics. J Geophys Res 73:5855–5899CrossRefGoogle Scholar
  20. 20.
    Glen W (1982) The road to Jaramillo: critical years of the revolution in earth science. Stanford University Press, StanfordGoogle Scholar
  21. 21.
    CGEC (California Geothermal Energy Collaborative) (2006) California geothermal fields and existing power plants, Fact SheetGoogle Scholar
  22. 22.
    Hart SR, Glassley WE, Karig DE (1972) Basalts and sea-floor spreading behind the Mariana island arc. Earth Planet Sci Lett 15:12–18CrossRefGoogle Scholar
  23. 23.
    Hirth G, Kohlstedt D (2003) Rheology of the upper mantle and the mantle wedge: a view from the experimentalists. Geophys Monograph 138:83–105, American Geophysical Union, Washington, DCCrossRefGoogle Scholar
  24. 24.
    Kennedy BM, Kharaka YK, Evans WC, Ellwood A, DePaolo DJ, Thordsen J, Ambats G, Mariner RH (1997) Mantle fluids in the San Andreas fault system, California. Science 278:1278–1281CrossRefGoogle Scholar
  25. 25.
    Lachenbruch AH (1968) Preliminary geothermal model of the Sierra Nevada. J Geophys Res 73:6977–6989CrossRefGoogle Scholar
  26. 26.
    Farrar CD, Sorey ML, Roeloffs E, Galloway DL, Howle JF, Jacobson R (2003) Inferences on the hydrothermal system beneath the resurgent dome in Long Valley Caldera, east-central California, USA, from recent pumping tests and geochemical sampling. J Volcanol Geoth Res 127:305–328CrossRefGoogle Scholar
  27. 27.
    Bear J (1993) Modeling flow and contaminant transport in fractured rocks. In: Bear J, Tsang C-F, de Marsily G (eds) Flow and contaminant transport in fractured rock. Academic, New YorkGoogle Scholar
  28. 28.
    Bear J (1979) Hydraulics of groundwater. McGraw-Hill, New YorkGoogle Scholar
  29. 29.
    Batu V (1998) Aquifer hydraulics. Wiley, New YorkGoogle Scholar
  30. 30.
    Lee CH, Farmer IW (1990) A simple method of estimating rock mass porosity and permeability. Int J Min Geol Eng 8:57–65CrossRefGoogle Scholar
  31. 31.
    Kozeny J (1927) Über kapillare Leitung des Wassers im Boden. Sitzungsber. Akad Wissenschaft Wien 136:271–306Google Scholar
  32. 32.
    Carman PC (1937) Fluid flow through a granular bed. Trans Inst Chem Eng Lond 15:150–156Google Scholar
  33. 33.
    Carman PC (1956) Flow of gases through porous media. Butterworths, LondonGoogle Scholar
  34. 34.
    Björnsson G, Bodvarsson G (1990) A survey of geothermal reservoir properties. Geothermics 19:17–27CrossRefGoogle Scholar
  35. 35.
    Williams CF (2007) Updated methods for estimating recovery factors for geothermal resources. In: Proceedings of the 32nd Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CaliforniaGoogle Scholar
  36. 36.
    Smith MC (1983) A history of hot dry rock geothermal energy systems. J Volcanol Geoth Res 15:1–20CrossRefGoogle Scholar
  37. 37.
    Tester JW, Brown DW, Potter RM (1989) Hot dry rock geothermal energy – a new energy agenda for the 21st Century. Los Alamos National Laboratory report LA-11514-MSGoogle Scholar
  38. 38.
    Duchane D, Brown D (2002) Hot dry rock (HDR) geothermal energy research and development at Fenton Hill, New Mexico. Geo-Heat Center Bull 23(4):13–19Google Scholar
  39. 39.
    Tester JW, Anderson BJ, Batchelor AS, Blackwell DD, DiPippio R, Drake EM, Garnish J, Livesay B, Moore MC, Nichols K, Petty S, Toksoz MN, Veatch RW Jr (2006) The future of geothermal energy. MIT Press, BostonGoogle Scholar
  40. 40.
    Lund JW, Freeston DH, Boyd TL (2005) Direct application of geothermal energy. 2005 worldwide review. Geothermics 34:690–727CrossRefGoogle Scholar
  41. 41.
    Ochsner K (2008) Geothermal heat pumps. Earthscan, LondonGoogle Scholar

Books and Reviews

  1. DiPippo R (2008) Geothermal power plants, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  2. Duffield WA, Sass JH (2003) Geothermal energy – clean power from the Earth’s heat. U.S. Geological Survey Circular 1249Google Scholar
  3. Glassley WE (2010) Geothermal energy: renewable energy and the environment. Taylor and Francis, Boca RatonCrossRefGoogle Scholar
  4. Krauskopf KB, Bird DK (2003) Introduction to geochemistry, 3rd edn. McGraw-Hill, New YorkGoogle Scholar
  5. Reynolds JM (1997) An introduction to applied and environmental geophysics. Wiley, New YorkGoogle Scholar
  6. Ryback L, Muffler LJP (1979) Geothermal systems: principles and case histories. Wiley, New YorkGoogle Scholar
  7. Williams CF, Reed MJ, Mariner RH (2008) A review of methods by the U.S. Geological Survey in the assessment of identified geothermal resources. U.S. Geological Survey Open File Report 2008-1296Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Energy InstituteUniversity of CaliforniaDavisUSA
  2. 2.Geologisk InstitutUniversity of AarhusAarhusDenmark