Encyclopedia of Sustainability Science and Technology

2012 Edition
| Editors: Robert A. Meyers

Geothermal Power Capacity, Sustainability and Renewability of

  • Subir K. Sanyal
Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-0851-3_229

Definition of the Subject and Its Importance

Geothermal energy is the heat energy of the earth, produced through wells as hot water or steam. Geothermal power capacity is this energy extraction rate (whether as thermal energy or equivalent electrical energy produced per unit time), expressed in Watt or an equivalent unit. The vast content of heat energy within the earth is limitless for all practical purposes, but the geothermal power capacity available from the earth is constrained by various technological and economic limits to the utilization of this energy. Given a geothermal power generation scheme (for example, a district heating scheme using geothermal water or an electric power operation using geothermal water or steam), the issue is how sustainable, technically and economically, the scheme would be and to what extent this energy supply is naturally renewable.

For the purposes of this entry, sustainability is defined as the ability to economically maintain an installed power...

This is a preview of subscription content, log in to check access.

Bibliography

  1. 1.
    Axelsson G, Stefansson V, Björnsson G (2004) Sustainable utilization of geothermal resources. In: Proceedings of the twenty-ninth workshop on geothermal reservoir engineering, Stanford University, Stanford, pp 26–28Google Scholar
  2. 2.
    Rybach L (2003) Sustainable use of geothermal resources: renewability aspects. In: IGC 2003 short course, UNU Geothermal Training Programme, IcelandGoogle Scholar
  3. 3.
    Axelsson G, Gudmundsson A, Steingrimsson B, Palmason G, Armannsson H, Tulinius H, Flovenz OG, Bjornsson S, Stefansson V (2001) Sustainable production of geothermal energy: suggested definition. IGA-News Quarterly No. 43:1–2Google Scholar
  4. 4.
    Stefansson V (2000) The renewability of geothermal energy. In: Proceedings World geothermal congress, Kyushu-Tohoku, Japan, 28 May–10 June 2000Google Scholar
  5. 5.
    Rybach L, Mégel T, Eugster WJ (1999) How renewable are geothermal resources? Trans Geotherm Res Council 23:563–566Google Scholar
  6. 6.
    Wright PM (1995) The sustainability of production from geothermal resources. In: Proceedings of the World geothermal congress, Florence, Italy, 18–31 May 1995Google Scholar
  7. 7.
    Sanyal S (2005) Sustainability and renewability of geothermal power capacity. In: Proceedings of the World geothermal congress, Antalya, Turkey, 24–29 Apr 2005Google Scholar
  8. 8.
    Pritchett JW (1998) Modeling post-abandonment electrical capacity recovery for a two-phase geothermal reservoir. Trans Geotherm Res Council 22:521–528Google Scholar
  9. 9.
    Parini M, Cappetti G, Laudiano M, Bertani R, Monterrosa M (1995) Reservoir modeling study modeling study of the Ahuachapan geothermal field (El Salvador) in the frame of a generation stabilization project. In: Proceedings of World geothermal congress, Florence, Italy, 18–31 May 1995Google Scholar
  10. 10.
    Butler SJ, Sanyal SK, Robertson-Tait A, Lovekin JW, Benoit D (2001) A case history of numerical modeling of a fault-controlled geothermal system at Beowawe, Nevada. In: Proceedings of the twenty-sixth workshop on geothermal reservoir engineering, Stanford University, Stanford, 29–31 Jan 2001Google Scholar
  11. 11.
    Butler SJ, Sanyal SK, Henneberger RC, Klein CW, Gutiérrez H, de León JS (2000) Numerical modeling of the Cerro Prieto geothermal field, Mexico. In: Proceedings of the World Geothermal Congress, Kyushu-Tohoku, Japan, 28 May–10 June 2000Google Scholar
  12. 12.
    Wisian KW, Blackwell DD, Richards M (2001) Correlation of surface heat loss and total energy production for geothermal systems. Trans Geotherm Res Council 25:331–336Google Scholar
  13. 13.
    Lippmann MJ, Bodvarsson GS (1985) The Heber geothermal field, California: natural state and exploitation modeling studies. J Geophys Res 90(B1):745–758CrossRefGoogle Scholar
  14. 14.
    McGuinness M, White S, Young R, Ishizaki H, Ikeuchi K, Yoshida Y (1995) A model of the Kakkonda geothermal reservoir. Geothermics 24:1–48CrossRefGoogle Scholar
  15. 15.
    White SP, Kissling WM, McGuinness MJ (1997) Models of the Kawareu geothermal reservoir. Trans Geotherm Res Council 21:33–39Google Scholar
  16. 16.
    Tulinius H, Sigurdsson O (1989) Two-dimensional simulation of the Krafla-Hvitholar geothermal field, Iceland. In: Proceedings of the fourteenth workshop on geothermal reservoir engineering, Stanford University, Stanford, 24–26 Jan 1989Google Scholar
  17. 17.
    Sorey ML (1985) Evolution and present state of the hydrothermal system in the Long Valley caldera. J Geophys Res 90:11219–11228CrossRefGoogle Scholar
  18. 18.
    Esberto MB, Sarmiento ZF (1999) Numerical modeling of the Mt. Apo geothermal reservoir. In: Proceedings of the twenty-fourth workshop on geothermal reservoir engineering, Stanford University, Stanford, 25–27 Jan 1999Google Scholar
  19. 19.
    Haukwa C, Bodvarsson GS, Lippmann MJ, Mainieri A (1992) Preliminary reservoir engineering studies of the Miravalles geothermal field, Costa Rica. In: Proceedings of the seventeenth workshop on geothermal reservoir engineering, Stanford University, Stanford, 29–31 Jan 1991Google Scholar
  20. 20.
    Sakagawa Y, Takahashi M, Hanano M, Ishido T, Demboya N (1994) Numerical simulation of the Mori geothermal field, Japan. In: Nineteenth workshop on geothermal reservoir engineering, Stanford University, Stanford, 18–20 Jan 1994Google Scholar
  21. 21.
    Kiryukhin AV (2004) Modeling study of the Mutnovsky geothermal field (Dachny) in connection with the problem of steam supply for 50 MWe PP. In: Twenty-ninth workshop on geothermal reservoir engineering, Stanford University, Stanford, 26–28 Jan 2004Google Scholar
  22. 22.
    Steingrimsson B, Bodvarsson GS, Gunnlaugsson E, Gislason G, Sigurdsson O (2000) Modeling studies of the Nesjavellir geothermal field, Iceland. In: Proceedings of the World geothermal congress, Kyushu-Tohoku, Japan, 28 May–10 June 2000Google Scholar
  23. 23.
    McGuinness MJ (1998) Ngawha geothermal field – a review. In: Proceedings of the twentieth New Zealand geothermal workshop, University of Auckland, Auckland, New ZealandGoogle Scholar
  24. 24.
    Yamada M, Iguchi K, Nakanishi S, Todaka N (2000) Reservoir characteristics and development plan of the Oguni geothermal field, Kyushu, Japan. Geothermics 29:151–169CrossRefGoogle Scholar
  25. 25.
    Nakanishi S, Nobuyuki I (2000) Reservoir simulation study of the Onikobe geothermal field, Japan. In: Proceedings of the World geothermal congress, Kyushu-Tohoku, Japan, 28 May–10 June 2000Google Scholar
  26. 26.
    Yearsley E (1994) Roosevelt hot springs reservoir model applied to forecasting remaining field potential. Trans Geotherm Res Council 18:617–622Google Scholar
  27. 27.
    Atmojo JP, Itoi R, Fukuda M, Tanaka T, Daud Y, Sudarman S (2001) Numerical modeling study of Sibayak geothermal reservoir, North Sumatra, Indonesia. In: Proceedings of the twenty-sixth workshop on geothermal reservoir engineering, Stanford University, Stanford, 29–31 Jan 2001Google Scholar
  28. 28.
    Pritchett JW, Garg SK, Ariki K, Kawano Y (1991) Numerical simulation of the Sumikawa geothermal field in the natural state. In: Proceedings of the sixteenth workshop on geothermal reservoir engineering, Stanford University, Stanford, 23–25 Jan 1991Google Scholar
  29. 29.
    Furuya S, Aoki M, Gotoh H, Takenaka T (2000) Takigami geothermal system, Northeastern Kyushu, Japan. Geothermics 29:191–211CrossRefGoogle Scholar
  30. 30.
    Butler SJ, Sanyal SK, Klein CW, Iwata S, Itoh M (2004) Numerical simulation and performance evaluation of the Uenotai geothermal field, Akita Prefecture. Jpn Trans Geotherm Res Council 28:455–460Google Scholar
  31. 31.
    Bibby HM, Caldwell TG, Davey FJ, Webb TH (1995) Geophysical evidence on the structure of the Taupo volcanic zone and its hydrothermal circulation. J Volcanol Geotherm Res 68:29–58CrossRefGoogle Scholar
  32. 32.
    Sanyal SK, Pham M, Iwata S, Suzuki M (2000) Numerical simulation of the Wasabizawa geothermal field, Akita Prefecture. Jpn Trans Geotherm Res Council 24:623–630Google Scholar
  33. 33.
    Menzies AJ, Granados EE, Sanyal SK, Mérida-I L, Caicedo- AA (1991) Numerical modeling of the initial state and matching of well test data from the Zunil geothermal field, Guatemala. In: Proceedings of the sixteenth workshop on geothermal reservoir engineering, Stanford University, Stanford, 23–25 Jan 1991Google Scholar
  34. 34.
    Sanyal SK, Klein CW, Lovekin JW, Henneberger RC (2004) National assessment of U.S. geothermal resources – a perspective. Trans Geotherm Res Council 28:355–362Google Scholar
  35. 35.
    Klein CW, Lovekin JW, Sanyal SK (2004) New geothermal site identification and quantification. In: California energy commission PIER consultant report, P500-04-051Google Scholar
  36. 36.
    Clotworthy A (2000) Response of Wairakei geothermal reservoir to 40 years of production. In: Proceedings of the World geothermal congress, Kyushu-Tohoku, Japan, 28 May–10 June 2000Google Scholar
  37. 37.
    MIT (2006) The future of geothermal energy – impact of enhanced geothermal systems (EGS) on the Unites States in the 21st century. An assessment by an MIT – Led interdisciplinary panel, Massachusetts Institute of Technology, CambridgeGoogle Scholar
  38. 38.
    Sanyal SK (2010) Future of geothermal energy. In: Proceedings of the thirty-fifth workshop on geothermal reservoir engineering, Stanford University, Stanford, 1–3 Feb 2010, SGP-TR-188Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.GeothermEx, Inc.RichmondUSA