Encyclopedia of Sustainability Science and Technology

2012 Edition
| Editors: Robert A. Meyers

Groundwater Impacts of Radioactive Wastes and Associated Environmental Modeling Assessment

Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-0851-3_203

Definition of the Subject

Ever since the dawn of the nuclear age, especially since the 1970s with the work related to exploration of Yucca Mountain as a potential nuclear waste repository [1] and remediation of former nuclear fuel processing sites such as Hanford [2], there have been significant public concerns over groundwater impacts of radioactive wastes. This is because groundwater is a vital water resource with tremendous values to public water supplies and ecological lives, and because groundwater provides a pathway for potential spread of radioactive contaminants, posing significant risks to human health and ecological systems. Investigation of groundwater impacts of radioactive wastes requires understanding hydrogeological, geochemical, and biological processes that control the fate and transport of radionuclide contaminants. It will also require developing numerical simulators to integrate these processes for future projection under both natural and engineered...

This is a preview of subscription content, log in to check access.

Bibliography

  1. 1.
    Bodvarsson GS, Boyle W, Patterson R, Williams D (1999) Overview of scientific investigations at Yucca Mountain – the potential repository for high-level nuclear waste. J Contam Hydrol 38:3–24CrossRefGoogle Scholar
  2. 2.
    Gephart RE (2003) Hanford: a conversation about nuclear waste and cleanup. Battelle, ColumbusGoogle Scholar
  3. 3.
    Ahearne JF (1997) Radioactive waste: the size of the problem. Phys Today 50(6):24–29CrossRefGoogle Scholar
  4. 4.
    Abdelouas A (2006) Uranium mill tailings: geochemistry, mineralogy, and environmental impact. Elements 2:335–341CrossRefGoogle Scholar
  5. 5.
    Riley RG, Zachara JM, Wobber FJ (1992) Chemical contaminants on DOE lands and selection of contaminant mixtures for subsurface science research, DOE/ER-0547T. U.S. Department of Energy, Washington, DCGoogle Scholar
  6. 6.
    Bradley DJ, Frank CW, Mikerin Y (1996) Nuclear contamination from weapons complexes in the former Soviet Union and the United States. Phys Today 49:40–45CrossRefGoogle Scholar
  7. 7.
    Whicker FW, Shaw G, Voigt G, Holm E (1999) Radioactive contamination: state of the science and its application to predictive models. Environ Pollut 100:133–149CrossRefGoogle Scholar
  8. 8.
    Abdelouas A, Lutze W, Nuttall HE (1999) Uranium contamination in the subsurface; characterization and remediation. Rev Mineral Geochem 38:433–473Google Scholar
  9. 9.
    Davis JA, Meece DE, Kohler M, Curtis GP (2004) Approaches to surface complexation modeling of uranium (VI) adsorption on aquifer sediments. Geochim Cosmochim Acta 68(18):3621–3641CrossRefGoogle Scholar
  10. 10.
    Ewing RC (2004) Environmental impact of the nuclear fuel cycle. In: Gieré R, Stille P (eds) Energy, waste and the environment: a geochemical perspective, geological society special publication 236. The Geological Society, London, pp 7–23Google Scholar
  11. 11.
    Lee D, Walton MR, Megio JL (2005) Biological and chemical interactions with U(VI) during anaerobic enrichment in the presence of iron oxide coated quartz. Water Res 39:4363–4374CrossRefGoogle Scholar
  12. 12.
    Zhu C, Anderson G (2002) Environmental applications of geochemical modeling. Cambridge University Press, LondonCrossRefGoogle Scholar
  13. 13.
    Renshaw J, Butchins LJC, Livens FR, May I, Charnock JM, Lloyd JR (2005) Bioreduction of uranium: environmental implications of a pentavalent intermediate. Environ Sci Technol 39:5657–5660CrossRefGoogle Scholar
  14. 14.
    Fishlock D (1994) The dirtiest place on earth. New Sci 1913:34–37Google Scholar
  15. 15.
    Zachara JM, Serne J, Freshley M, Mann F, Anderson F, Wood M, Jones T, Myers D (2007) Geochemical processes controlling migration of tank wastes in Hanford’s vadose zone. Vadose Zone J 6:985–1003CrossRefGoogle Scholar
  16. 16.
    Gee GM, Oostrom M, Freshley MD, Rockhold ML, Zachara JM (2007) Hanford site vadose zone studies: an overview. Vadose Zone J 6:899–905CrossRefGoogle Scholar
  17. 17.
    Um W, Serne RJ, Brown CF, Last GV (2007) U(VI) adsorption on aquifer sediments at the Hanford site. J Contam Hydrol 93:255–269CrossRefGoogle Scholar
  18. 18.
    Hartman MJ, Morasch LF, Webber WD (2007) Hanford site groundwater monitoring for fiscal year 2006, Pacific Northwest National Laboratory, RichlandGoogle Scholar
  19. 19.
    Hartman MJ, Webber WD, Fluor Hanford Inc (2008) Hanford site groundwater monitoring for fiscal year 2007. DOE/RL-2008-01, Revision 0, Pacific Northwest National Laboratory, RichlandGoogle Scholar
  20. 20.
    Phillips H, Watson DB, Roh Y (2007) Uranium deposition in a weathered fractured saprolite/shale. Environ Sci Technol 41:7653–7660CrossRefGoogle Scholar
  21. 21.
    Wu W, Carley J, Fienen M, Mehlhorn T, Lowe K, Nyman J, Luo J, Gentile ME, Rajan R, Wagner D, Hickey RF, Gu B, Watson D, Cirpka O, Kitanidis P, Jardine J, Criddle CS (2006) Pilot-scale in situ bioremediation of uranium in a highly contaminated aquifer. 1. Conditioning of a treatment zone. Environ Sci Technol 40(12):3978–3985CrossRefGoogle Scholar
  22. 22.
    Wu W, Carley J, Luo J, Ginder-Vogel MA, Cardenas E, Leigh MB, Hwang C, Kelly SD, Ruan C, Wu L, Nostrand JV, Gentry T, Lowe K, Mehlhorn TL, Caroll S, Luo W, Fields MW, Gu B, Watson D, Kemner K, Marsh T, Tiedje J, Zhou J, Fendorf S, Kitanidis PK, Jardine PM, Criddle C (2007) In situ bioreduction of uranium(VI) to submicromolar levels and reoxidation by dissolved oxygen. Environ Sci Technol 41:5716–5723CrossRefGoogle Scholar
  23. 23.
    Carlton WH (1997) Assessment of neptunium, americium, and curium in the Savannah River Site Environment. WSRC-TR-97-00266, Westinghouse Savannah River Co, AikenCrossRefGoogle Scholar
  24. 24.
    Dai M, Kelley JM, Buesseler KO (2002) Sources and migration of plutonium in groundwater at the Savannah River Site. Environ Sci Technol 36:3690–3699CrossRefGoogle Scholar
  25. 25.
    Westinghouse Savannah River Co (1998) The Savannah River Site’s groundwater monitoring program: third quarter 1997. ESH-EMS-970490, U.S. Department of Energy, Washington, DCGoogle Scholar
  26. 26.
    Curtis GP, Davis JA, Naftz DL (2006) Simulation of reactive transport of uranium (VI) in groundwater with variable chemical conditions. Water Resour Res 42:W04404. doi:10.1029/2005WR003979CrossRefGoogle Scholar
  27. 27.
    Yabusaki SB, Fang Y, Long PE, Resch CT, Peacock AD, Komlos J, Jaffed PR, Morrison SJ, Dayvault RD, White DC, Anderson RT (2007) Uranium removal from groundwater via in situ biostimulation: field-scale modeling of transport and biological processes. J Contam Hydrol 93:216–235CrossRefGoogle Scholar
  28. 28.
    Read D, Ross D, Sims RJ (1998) The migration of uranium through Clashach sandstone: the role of low molecular weight organics in enhancing radionuclide transport. J Contam Hydrol 35:235–248CrossRefGoogle Scholar
  29. 29.
    Bethke CM, Brady PV (2000) How the Kd approach undermines group water cleanup. Ground Water 38(3):435–443CrossRefGoogle Scholar
  30. 30.
    Glynn PD (2003) Modeling Np and Pu transport with a surface complexation model and spatially variant sorption capacities; implications for reactive transport modeling and performance assessments of nuclear waste disposal sites; reactive transport modeling in the geosciences. Comput Geosci 29(3):331–349CrossRefGoogle Scholar
  31. 31.
    Zhu C (2003) A case against Kd-based transport models: natural attenuation at a mill tailings site; reactive transport modeling in the geosciences. Comput Geosci 29(3):351–359CrossRefGoogle Scholar
  32. 32.
    Bond DL, Davis JA, Zachara JM (2008) Uranium(VI) release from contaminated vadose zone sediments: estimation of potential contributions from dissolution and desorption. In: Barnett MO, Kent DB (eds) Adsorption of metals to geomedia II. chap. 14, Elsevier, Amsterdam, pp 375–416Google Scholar
  33. 33.
    Catalano JG, Mckinley JP, Zachara JM, Heald SM, Smith SC, Brown GE (2006) Changes in uranium speciation through a depth sequence of contaminated Hanford sediments. Environ Sci Technol 40(8):2517–2524CrossRefGoogle Scholar
  34. 34.
    Liu C, Zachara JM, Qafoku NP, Wang Z (2008) Scale-dependent desorption of uranium from contaminated subsurface sediments. Water Resour Res 44:W08413. doi:10.1029/2007WR006478CrossRefGoogle Scholar
  35. 35.
    Luo J, Weber F, Cirpka OA, Wu W, Nyman JL, Carley J, Jardine PM, Criddle CS, Kitanidis PK (2007) Modeling in-situ uranium(VI) bioreduction by sulfate-reducing bacteria. J Contam Hydrol 92:129–148CrossRefGoogle Scholar
  36. 36.
    Keeney-Kennicutt WL, Morse JW (1985) The redox chemistry of Pu(V)O2+ interaction with common mineral surfaces in dilute solutions and seawater. Geochim Cosmochim Acta 49(12):2577–2588CrossRefGoogle Scholar
  37. 37.
    Sanchez AL, Murray JW, Sibley TH (1985) The adsorption of plutonium on goethite. Geochim Cosmochim Acta 49:2297–2307CrossRefGoogle Scholar
  38. 38.
    Duff MC, Hunter DB, Triay IR, Bertsch PM, Reed DT, Sutton SR, Shea-McCarthy G, Kitten J, Eng P, Chipera SJ, Vaniman DT (1999) Mineral associations and average oxidation states of sorbed Pu on tuff. Environ Sci Technol 33:2163–2169CrossRefGoogle Scholar
  39. 39.
    Novikov P, Kalmykov SN, Utsunomiya S, Ewing RC, Horreard F, Merkulov A, Clark SB, Tkachev VV, Myasoedov BF (2006) Colloid transport of plutonium in the far-field of the mayak production association, Russia. Science 314:638–641CrossRefGoogle Scholar
  40. 40.
    Kim JI (1993) The chemical behavior of transuranium elements and barrier functions in natural aquifer systems. Mater Res Soc Symp Proc 294:3–21CrossRefGoogle Scholar
  41. 41.
    Kim JI (1994) Actinide colloids in natural aquifer systems. Mater Res Soc Bull 19:47–53Google Scholar
  42. 42.
    Braithwaite A, Livens FR, Richardson S, Howe MT (1997) Kinetically controlled release of uranium from soils. Eur J Soil Sci 48:661–673CrossRefGoogle Scholar
  43. 43.
    Barnett MO, Jardine PM, Brooks SC, Selim HM (2000) Adsorption and transport of uranium(VI) in subsurface media. Soil Sci Soc Am J 64:908–917CrossRefGoogle Scholar
  44. 44.
    Baik MH, Cho WJ, Hahn PS (2004) Sorption of U(VI) onto granite surfaces: a kinetic approach. J Radioanal Nucl Chem 260:495–502CrossRefGoogle Scholar
  45. 45.
    Qafoku NP, Zachara JM, Liu C, Gassman PL, Qafoku OS, Smith SC (2005) Kinetic desorption and sorption of U(VI) during reactive transport in a contaminated Hanford sediment. Environ Sci Technol 39:3157–3165CrossRefGoogle Scholar
  46. 46.
    Liu C, Zachara JM, Yantansee W, Majors PD, McKinley JP (2006) Microscopic reactive diffusion of uranium in the contaminated sediments at Hanford, USA. Water Resour Res 42:W12420. doi:10.1029/2006WR005031CrossRefGoogle Scholar
  47. 47.
    Liu C, Shi S, Zachara JM (2009) Kinetics of uranium(VI) desorption from contaminated sediments: effect of geochemical conditions and model evaluation. Environ Sci Technol 43(17):6560–6566CrossRefGoogle Scholar
  48. 48.
    Arai Y, Marcus MA, Tamura N, Davis JA, Zachara JM (2007) Spectroscopic evidence for uranium bearing precipitates in vadose zone sediments at the Hanford 300-area site. Environ Sci Technol 41:4633–4639CrossRefGoogle Scholar
  49. 49.
    Stubbs JE, Veblen LA, Elbert DC, Zachara JM, Davis JA, Veblen DR (2009) Newly recognized hosts for uranium in the Hanford site vadose zone. Geochim Cosmochim Acta 73(6):1563–1576CrossRefGoogle Scholar
  50. 50.
    Waite TD, Davis JA, Payne TE, Waychunas GA, Xu N (1994) Uranium (VI) adsorption to ferrihydrite: application of a surface complexation model. Geochim Cosmochim Acta 58(24):5465–5478CrossRefGoogle Scholar
  51. 51.
    Fox PM, Davis JA, Zachara JM (2006) The effect of calcium on aqueous uranium(VI) speciation and adsorption to ferrihydrite and quartz. Geochim Cosmochim Acta 70:1379–1387CrossRefGoogle Scholar
  52. 52.
    Dong W, Ball WP, Liu C, Wang Z, Stone AT, Bai J, Zachara JM (2005) Influence of calcite and dissolved calcium on uranium(VI) sorption to a Hanford subsurface sediment. Environ Sci Technol 39:7949–7955CrossRefGoogle Scholar
  53. 53.
    Hu QH, Zavarin M, Rose TP (2008) Effect of reducing groundwater on the retardation of redox-sensitive radionuclides. Geochem Trans 9:12. doi:10.1186/1467-4866-9-12CrossRefGoogle Scholar
  54. 54.
    Liu C, Zachara JM, Qafoku OS, McKinley JP, Heald SM, Wang Z (2004) Dissolution of uranyl microprecipitates in subsurface sediments at Hanford site, WA. Geochim Cosmochim Acta 68:4519–4537CrossRefGoogle Scholar
  55. 55.
    McKinley JP, Zachara JM, Liu C, Heald SM (2006) Microscale controls on the fate of contaminant uranium in the vadose zone, Hanford site, Washington. Geochim Cosmochim Acta 70:1873–1887CrossRefGoogle Scholar
  56. 56.
    Gόmez P, Garralόn A, Buil B, Turrero MJ, Sánchez L, de la Cruz B (2006) Modeling of geochemical processes related to uranium mobilization in the groundwater of a uranium mine. Sci Total Environ 366:295–309CrossRefGoogle Scholar
  57. 57.
    Abdelouas A, Lutze W, Nuttall E (1998) Chemical reactions of uranium in ground water at a mill tailings site. J Contam Hydrol 34:343–361CrossRefGoogle Scholar
  58. 58.
    Abdelouas A, Lutze W, Gong W, Nuttall EH, Strietelmeier BA, Travis BJ (2000) Biological reduction of uranium in groundwater and subsurface soil. Sci Total Environ 250:21–35CrossRefGoogle Scholar
  59. 59.
    Ohnuki T, Kozai N, Samadfam M, Yasuda R, Yamamoto S, Narumi K, Naramoto H, Murakami T (2004) The formation of autunite (Ca(UO2)2(PO4)2·nH2O) within the leached layer of dissolving apatite: incorporation mechanism of uranium by apatite. Chem Geol 211:1–14CrossRefGoogle Scholar
  60. 60.
    Martin AJ, Crusius J, Jay McNee J, Yanful EK (2003) The mobility of radium-226 and trace metals in pre-oxidized subaqueous uranium mill tailings. Appl Geochem 18:1095–1110CrossRefGoogle Scholar
  61. 61.
    Landa ER (2004) Uranium mill tailings: nuclear waste and natural laboratory for geochemical and radioecological investigations. J Environ Radioactiv 77:1–27CrossRefGoogle Scholar
  62. 62.
    Lovely DR, Coates JD (1997) Bioremediation of metal contamination. Curr Opin Biotechnol 8:285–289CrossRefGoogle Scholar
  63. 63.
    Liu C, Gorby YA, Zachara JM, Fredrickson JK, Brown CF (2002) Reduction Kinetics of Fe(III), Co(III), U(VI), Cr(VI), and Tc(VII) in cultures of dissimilatory metal-reducing bacteria. Biotechnol Bioeng 80(6):637–649CrossRefGoogle Scholar
  64. 64.
    Wu W, Carley J, Gentry T, Ginder-Vogel MA, Fienen M, Mehlhorn T, Yan H, Carroll S, Nyman J, Luo J, Gentile ME, Fields MW, Hickey RF, Watson D, Cirpka OA, Fendorf S, Zhou J, Kitanidis P, Jardine PM, Criddle CS (2006) Pilot-scale in situ bioremediation of uranium in a highly contaminated aquifer. 2: U(VI) reduction and geochemical control of U(VI) bioavailability. Environ Sci Technol 40:3986–3995CrossRefGoogle Scholar
  65. 65.
    Anderson RT, Vrionis HA, Ortiz-Bernad I, Resch CT, Long PE, Dayvault R, Karp K, Marutzky S, Metzler DR, Peacock A, White DC, Lowe M, Lovley DR (2003) Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl Environ Microbiol 69(10):5884–5891CrossRefGoogle Scholar
  66. 66.
    Zhong L, Liu C, Zachara JM, Kennedy DW, Szecsody JE, Wood BD (2005) Oxidative remobilization of biogenic uranium (IV) precipitates: effects of Iron (II) and pH. J Environ Qual 34(5):1763–1771CrossRefGoogle Scholar
  67. 67.
    Wan J, Tokunaga TK, Brodie E, Wang Z, Zheng Z, Herman D, Hazen T, Firestone MK, Sutton SR (2005) Reoxidation of bioreduced uranium under reducing conditions. Environ Sci Technol 39:6162–6169CrossRefGoogle Scholar
  68. 68.
    Zheng C, Wang PP (1999) MT3DMS, a modular three-dimensional multi-species transport model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems; documentation and user’s guide, U.S. Army Engineer Research and Development Center Contract Report SERDP-99-1, Vicksburg, p 202. http://hydro.geo.ua.edu/mt3d/
  69. 69.
    Prommer H, Barry DA, Zheng C (2003) MODFLOW/MT3DMS based reactive multicomponent transport modeling. Ground Water 41(2):247–257CrossRefGoogle Scholar
  70. 70.
    Mayer KU, Frind EO, Blowes DW (2002) Multicomponent reactive transport modeling in variably saturated porous media using a generalized formulation for kinetically controlled reactions. Water Resour Res 38:1174. doi:10:1029/2001WR000862CrossRefGoogle Scholar
  71. 71.
    Parkhurst DL, Kipp KL, Engesgaard P, Charlton SC (2004) PHAST – a program for simulating ground-water flow, solute transport and multicomponent geochemical reactions. USGS Tech Meth 6-A8:154Google Scholar
  72. 72.
    Davis JA, Payne TE, Waite TD (2002) Simulating the pH and pCO2 dependence of uranium(VI) adsorption by a weathered schist with surface complexation models. In: Geochemistry of soil radionuclides. Soil Science Society of America, Madison, pp 61–68Google Scholar
  73. 73.
    Ma R, Zheng C, Prommer H, Greskowiak J, Liu C, Zachara J, Rockhold M (2010) A field-scale reactive transport model for U(VI) migration influenced by coupled multirate mass transfer and surface complexation reactions. Water Resour Res 46:W05509. doi:10.1029/2009WR008168CrossRefGoogle Scholar
  74. 74.
    Greskowiak J, Prommer H, Liu C, Post VEA, Ma R, Zheng C, Zachara JM (2010) Comparison of parameter sensitivities between a laboratory and field scale model of uranium transport in a dual domain, distributed-rate reactive system. Water Resour Res 46:W09509. doi:10.1029/2009WR008781CrossRefGoogle Scholar
  75. 75.
    Fang Y, Yabusaki SB, Morrison SJ, Amonette JP, Long PE (2009) Multicomponent reactive transport modeling of uranium bioremediation field experiments. Geochim Cosmochim Acta 73:6029–6051CrossRefGoogle Scholar
  76. 76.
    Gelhar LW (1986) Stochastic subsurface hydrology – from theory to applications. Water Resour Res 22(9):135S–145SCrossRefGoogle Scholar
  77. 77.
    Dagan G (1989) Flow and transport in porous formations. Springer, New YorkCrossRefGoogle Scholar
  78. 78.
    Barber LB (1994) Sorption of chlorobenzenes to Cape Cod aquifer sediments. Environ Sci Technol 28:890–897CrossRefGoogle Scholar
  79. 79.
    Friedly JC, Davis JA, Kent DB (1995) Modeling hexavalent chromium reduction in groundwater in field-scale transport and laboratory batch experiments. Water Resour Res 31:2783–2794CrossRefGoogle Scholar
  80. 80.
    Kleineidam S, Rugner H, Grathwohl P (1999) Impact of grain scale heterogeneity on slow sorption kinetics. Environ Toxicol Chem 18:1673–1678CrossRefGoogle Scholar
  81. 81.
    Allen-King RM, Divine DP, Robin MJL, Alldredge JRG (2006) Spatial distributions of perchloroethylene reactive transport parameters in the Borden aquifer. Water Resour Res 42:W01413. doi:10.1029/2005WR003977CrossRefGoogle Scholar
  82. 82.
    Descourvières C, Hartog N, Patterson BM, Oldham C, Prommer H (2010) Geochemical controls on sediment reactivity and buffering processes in a heterogeneous aquifer. Appl Geochem 25:261–275CrossRefGoogle Scholar
  83. 83.
    Liu C, Zachara JM, Smith SC, McKinley JP, Ainsworth CC (2003) Desorption kinetics of radiocesium from the subsurface sediments at Hanford site, USA. Geochim Cosmochim Acta 67:2893–2912CrossRefGoogle Scholar
  84. 84.
    McKinley JP, Zachara JM, Smith SC, Liu C (2007) Cation exchange reactions controlling desorption of 90Sr2+ from coarse-grained contaminated sediments from the Hanford formation, Washington. Geochim Cosmochim Acta 71(2):305–325CrossRefGoogle Scholar
  85. 85.
    Zachara JM, Ainsworth CC, Brown GE Jr, Catalano JG, McKinley JP, Qafoku O, Smith SC, Szecsody JE, Traina SJ, Warner JA (2004) Chromium speciation and mobility in a high level nuclear waste vadose zone plume. Geochim Cosmochim Acta 68(1):13–30CrossRefGoogle Scholar
  86. 86.
    Zheng C, Gorelick SM (2003) Analysis of solute transport in flow fields influenced by preferential flow paths at the decimeter scale. Ground Water 41(2):142–155CrossRefGoogle Scholar
  87. 87.
    Zachara J, Freshley M, Andersen G, DePaolo D, Fredrickson J, Haggerty R, Kent D, Konopka A, Lichtner P, Liu C, McKinley J, Rockhold M, Rubin Y, Szecsody J, Versteeg R, Ward A, Williams B, Zheng C (2007) Integrated field-scale subsurface research challenge, multi-scale mass transfer processes controlling natural attenuation and engineered remediation: an IFC focused on Hanford’s 300 area uranium plume. Proposal to the U.S. Department of Energy Office of Biological and Environmental Research LAB 06–16 – Environmental Remediation Science ProgramGoogle Scholar
  88. 88.
    Morrison SJ, Tripathi VS, Spangler RR (1995) Coupled reaction/transport of a chemical barrier for controlling U(VI) contamination in groundwater. J Contam Hydrol 17:347–363CrossRefGoogle Scholar
  89. 89.
    Zhu C, Hu FQ, Burden DS (2001) Multi-component reactive transport modeling of natural attenuation of an acid groundwater plume at a uranium mill tailings site. J Contam Hydrol 52:85–108CrossRefGoogle Scholar
  90. 90.
    Bain JG, Mayer KU, Blowes DW, Frind EO, Molson JWH, Kahnt R, Jenk U (2001) Modeling the closure-related geochemical evolution of groundwater at a former uranium mine. J Contam Hydrol 52:109–135CrossRefGoogle Scholar
  91. 91.
    Yabusaki SB, Fang Y, Waichler SR (2008) Building conceptual models of field-scale uranium reactive transport in a dynamic vadose zone-aquifer-river system. Water Resour Res 44:W12403. doi:10.1029/2007WR006617CrossRefGoogle Scholar
  92. 92.
    Feehley CE, Zheng C, Molz FJ (2000) A dual-domain mass transfer approach for modeling solute mass transfer in heterogeneous porous media, application to the MADE site. Water Resour Res 36:2501–2515CrossRefGoogle Scholar
  93. 93.
    Haggerty R, Harvey CF, von Schwerin CF, Meigs LC (2004) What controls the apparent timescale of solute mass transfer in aquifers and soils? A comparison of experimental results. Water Resour Res 40:W01510. doi:10.1029/2002WR001716CrossRefGoogle Scholar
  94. 94.
    Gorelick SM, Liu G, Zheng C (2005) Quantifying mass transfer in permeable media containing conductive dendritic networks. Geophys Res Lett 32:L18402. doi:10.1029/2005GL023512CrossRefGoogle Scholar
  95. 95.
    Zheng C, Bianchi M, Gorelick SM (2010) Lessons learned from 25 years of research at the MADE site. Ground Water (in press)Google Scholar
  96. 96.
    Seeboonruang U, Ginn TR (2006) Upscaling heterogeneity in aquifer reactivity via exposure-time concept: forward model. J Contam Hydrol 84:127–154CrossRefGoogle Scholar
  97. 97.
    Fernàndez-Garcia D, Llerar-Meza G, Gómez-Hernández JJ (2009) Upscaling transport with mass transfer models: mean behavior and propagation of uncertainty. Water Resour Res 45:W10411. doi:10.1029/2009WR007764CrossRefGoogle Scholar
  98. 98.
    Heβe F, Radu FA, Thullner M, Attinger S (2009) Upscaling of the advection–diffusion–reaction equation with monod reaction. Adv Water Resour 32:1336–1351CrossRefGoogle Scholar
  99. 99.
    Deng H, Dai Z, Wolfsberg A, Lu Z, Ye M, Reimus P (2010) Upscaling of reactive mass transport in fractured rocks with multimodal reactive mineral facies. Water Resour Res 46:15. doi:10.1029/2009WR008363CrossRefGoogle Scholar
  100. 100.
    Wang F, Bright J (2004) Scale effect and calibration of contaminant transport models. Ground Water 42(5):760–766CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Geological SciencesUniversity of AlabamaTuscaloosaUSA
  2. 2.Pacific Northwest National LaboratoryRichlandUSA
  3. 3.China University of GeosciencesWuhanChina