Skip to main content

Genotype by Environment Interaction and Adaptation

  • Reference work entry
Encyclopedia of Sustainability Science and Technology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 6,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

GE:

Genotype by environment interaction is differential genotypic expression across environments that may cause that a genotype selected among the best in one location to perform poorly in another. GE weakens association between phenotype and genotype, reducing genetic progress in breeding programs. In statistical terms, GE describes a situation in which the simultaneous effect of two classification variables (genotype and environment) on a continuous dependent third one, such as yield, does not follow an additive model.

MET:

A multi-environment trial is a series of trials sampling the target environmental range in which a particular set of genotypes is evaluated.

QTL:

A quantitative trait locus is a region in the genome associated with a particular quantitative phenotypic trait, such as crop yield, resource-use-efficiency, phenology, or height. QTL analysis is a statistical method that links phenotypic data (specific trait measurements on a series of individuals) and genotypic data (usually in the form of molecular markers taken on the same individual) in order to explain the genetic basis of complex traits. QTL number and the variation they explain on the phenotypic trait give clues about the genetic control of that trait, for example, if plant height is controlled by many genes of small effect, or by a few genes of large effect.

QTLxE:

QTL by environment interaction is differential QTL effect across environments that may cause that a favorable QTL in one environment may become irrelevant, or even unfavorable, in another.

Specific and wide adaptation:

A genotype is considered stable if it yields well relative to the productive potential of the environments in which is grown. If such concept of stability is shown for a wide agroecological array of environments, a genotype is considered to have general, wide, or broad adaptation. If stability is confined to a limited range, a genotype is said to have specific or narrow adaptation.

Bibliography

Primary Literature

  1. Student (1908) The probable error of a mean. Biometrika 6:1–25

    Google Scholar 

  2. Annicchiarico P (2002) Genotype × environment interactions: challenges and opportunities for plant breeding and cultivar recommendations. FAO plant production and protection paper no. 174. FAO, Rome

    Google Scholar 

  3. Annicchiarico P (2009) Coping with and exploiting genotype-by-environment interactions. In: Ceccarelli S, Guimaraës EP, Weltzien E (eds) Participatory plant breeding. FAO, Rome, pp 519–564

    Google Scholar 

  4. Cooper M, Hammer GL (eds) (1996) Plant adaptation and crop improvement. CAB International, Wallingford

    Google Scholar 

  5. Fox PN, Crossa J, Romagosa I (1997) Multi-environment testing and genotype by environment interaction. In: Kempton RA, Fox PN (eds) Statistical methods for plant variety evaluation. Chapman and Hall, London, pp 117–137

    Chapter  Google Scholar 

  6. Gauch HG (1992) Statistical analysis of regional yield trials. Elsevier, Amsterdam

    Google Scholar 

  7. Kang MS (1998) Using genotype-by-environment interaction for crop cultivar development. Adv Agron 62:199–252

    Article  Google Scholar 

  8. Kang MS, Gauch HG (1996) Genotype by environment interaction: new perspectives. CRC Press, Boca Raton

    Google Scholar 

  9. Kempton RA, Fox PN (1997) Statistical methods for plant variety evaluation. Chapman and Hall, London

    Google Scholar 

  10. Romagosa I, Fox PN (1993) Genotype-environment interaction and adaptation. In: Hayward MD, Bosemark NO, Romagosa I (eds) Plant breeding, principles and prospects. Chapman and Hall, London, pp 373–390

    Chapter  Google Scholar 

  11. Romagosa I, van Eeuwijk FA, Thomas WTB (2009) Statistical analyses of genotype by environment data. In: Carena M (ed) Handbook of plant breeding, vol 3, Cereals. Springer, New York, pp 291–331

    Google Scholar 

  12. van Eeuwijk FA (2006) Genotype by environment interaction: basics and beyond. In: Lamkey K, Lee M (eds) Plant breeding: the Arnell Hallauer international symposium. Blackwell, Oxford, pp 155–170

    Google Scholar 

  13. van Eeuwijk FA, Malosetti M, Yin X, Struik PC, Stam P (2005) Statistical models for genotype by environment data: from conventional ANOVA models to eco-physiological QTL models. Aust J Agr Res 56:883–894

    Article  Google Scholar 

  14. Voltas J, van Eeuwijk FA, Igartua E, Garcia del Moral LF, Molina-Cano JL, Romagosa I (2002) Genotype by environment interaction and adaptation in barley breeding: basic concepts and methods of analysis. In: Slafer GA, Molina-Cano JL, Savin R, Araus JL, Romagosa I (eds) Barley science: recent advances from molecular biology to agronomy of yield and quality. Haworth Pres, Binghamton, pp 205–241

    Google Scholar 

  15. Paterson AH (1998) Molecular dissection of complex traits. CRC Press, Boca Raton

    Google Scholar 

  16. Cooper M, van Eeuwijk FA, Hammer GL, Podlich DW, Messina C (2009) Modeling QTL for complex traits: detection and context for plant breeding. Curr Opin Plant Biol 12:231–240

    Article  CAS  Google Scholar 

  17. van Eeuwijk FA, Bink MCAM, Chenu K, Chapman SC (2010) Detection and use of QTL for complex traits in multiple environments. Curr Opin Plant Biol 13:193–205

    Article  CAS  Google Scholar 

  18. Calderini DF, Slafer GA (1999) Has yield stability changed with genetic improvement of wheat yield? Euphytica 107:51–59

    Article  Google Scholar 

  19. Foulkes MJ, Sylvester-Bradley R, Weightman R, Snape J (2007) Identifying physiological traits associated with improved drought resistance in winter wheat. Field Crop Res 103:11–24

    Article  Google Scholar 

  20. Reynolds MP, Borlaug NE (2006) Impacts of breeding on international collaborative wheat improvement. J Agric Sci 144:3–17, Cambridge

    Article  Google Scholar 

  21. Slafer GA, Araus JL (2007) Physiological traits for improving wheat yield under a wide range of conditions. In: Spiertz JHJ, Struik PC, van Laar HH (eds) Scale and complexity in plant systems research: gene-plant-crop relations. Springer, Dordrecht, pp 147–156

    Chapter  Google Scholar 

  22. Fischer RA, Edmeades GO (2010) Breeding and cereal yield progress. Crop Sci 50:S85–S98

    Article  Google Scholar 

  23. Reynolds MP, Foulkes J, Slafer GA, Berry P, Parry MJ, Snape JW, Angus WJ (2009) Raising yield potential in wheat. J Exp Bot 60:1899–1918

    Article  CAS  Google Scholar 

  24. Slafer GA (2003) Genetic basis of yield as viewed from a crop physiologist’s perspective. Ann Appl Biol 142:117–128

    Article  Google Scholar 

  25. Siddique KHM, Belford RK, Perry MW, Tennant D (1989) Growth, development and light interception of old and modern wheat cultivars in a Mediterranean environment. Aust J Agr Res 40:473–487

    Google Scholar 

  26. Slafer GA, Andrade FH (1993) Physiological attributes related to the generation of grain yield in bread wheat cultivars released at different eras. Field Crop Res 31:351–367

    Article  Google Scholar 

  27. Miralles DF, Katz SD, Colloca A, Slafer GA (1998) Floret development in near isogenic wheat lines differing in plant height. Field Crop Res 59:21–30

    Article  Google Scholar 

  28. Miralles DJ, Slafer GA (1995) Yield, biomass and yield components in dwarf, semidwarf and tall isogenic lines of spring wheat under recommended and late sowing dates. Plant Breed 114:392–396

    Article  Google Scholar 

  29. Richards RA (1996) Increasing yield potential in wheat – source and sink limitations. In: Reynolds MP, Rajaram S, McNab A (eds) Increasing yield potential in wheat: breaking the barriers. CIMMYT, Mexico, pp 134–149

    Google Scholar 

  30. Foulkes J, Slafer GA, Davies WJ, Berry P, Sylvester-Bradley R, Martre P, Calderini DF, Griffiths S, Reynolds M (2011) Raising yield potential of wheat. III. Optimizing partitioning to grain while maintaining lodging resistance. J Exp Bot 62:469–486

    Article  CAS  Google Scholar 

  31. Denison RF (2009) Darwinian agriculture: real, imaginary and complex trade-offs as constraints and opportunities. In: Sadras VO, Calderini D (eds) Crop physiology. Applications for genetic improvement and agronomy. Academic, Burlington, pp 215–234

    Google Scholar 

  32. Grando S, Ceccarelli S (2009) Breeding for quantitative variables. Part 3: breeding for resistance to abiotic stress. In: Ceccarelli S, Guimaraës EP, Weltzien E (eds) Participatory plant breeding. FAO, Rome, pp 391–417

    Google Scholar 

  33. Cooper M, Fox PN (1996) Environmental characterization based on probe and reference genotypes. In: Cooper M, Hammer GL (eds) Plant adaptation and crop improvement. CAB International, Wallingford, pp 529–547

    Google Scholar 

  34. Rasmusson DC (1996) Germplasm is paramount. In: Reynolds MP, Rajaram S, McNab A (eds) Increasing yield potential in wheat: breaking the barriers. CIMMYT, Mexico, pp 28–37

    Google Scholar 

  35. Hayes PM, Liu BH, Knapp SJ, Chen F, Jones B, Blake T, Franckowiak J, Rasmusson D, Sorrells M, Ullrich SE, Wesenberg D, Kleinhofs A (1993) Quantitative trait locus effects and environmental interaction in a sample of North American barley germplasm. Theor Appl Genet 87:392–401

    Article  Google Scholar 

  36. Comadran J, Thomas WTB, van Eeuwijk FA, Ceccarelli S, Grando S, Stanca AM, Pecchioni N, Akar T, Al-Yassin A, Benbelkacem A, Ouabbou H, Bort J, Romagosa I, Hacket CA, Russell JR (2009) Patterns of genetic diversity and linkage disequilibrium in a highly structured Hordeum vulgare association mapping population for the Mediterranean basin. Theor Appl Genet 119:175–187

    Article  CAS  Google Scholar 

  37. Cavanagh C, Morell M, Mackay I, Powell P (2008) From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants. Curr Opin Plant Biol 11:215–221

    Article  CAS  Google Scholar 

  38. Buckler ES, Holland JB, Bradbury PJ et al (2009) The genetic architecture of maize flowering time. Science 325:714–718

    Article  CAS  Google Scholar 

  39. Yu J, Holland JB, McMullen MD, Buckler ES (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178:539–551

    Article  Google Scholar 

  40. Huang X, Paulo MJ, Boer M, Effgen S, Keizer P, Koornneef M, van Eeuwijk FA (2011) Analysis of natural allelic variation in Arabidopsis using a multiparent recombinant inbred line population. Proc Natl Acad Sci 108:4488–4493

    Article  CAS  Google Scholar 

  41. Araus JL, Bort J, Steduto P, Villegas D, Royo C (2003) Breeding cereals for Mediterranean conditions: ecophysiological clues for biotechnology application. Ann Appl Biol 142:129–141

    Article  Google Scholar 

  42. Araus JL, Slafer GA, Royo C, Serret MD (2008) Breeding for yield potential and stress adaptation in cereals. Crit Rev Plant Sci 27:377–412

    Article  Google Scholar 

  43. Araus JL, Slafer GA, Reynolds MO, Royo C (2009) Breeding for quantitative variables. Part 5: breeding for yield potential. In: Ceccarelli S, Guimaraës EP, Weltzien E (eds) Participatory plant breeding. FAO, Rome, pp 449–477

    Google Scholar 

  44. Cattivelli L, Ceccarelli S, Romagosa I, Stanca M (2011) Abiotic stresses in barley: problems and solutions. In: Ullrich SE (ed) Barley: improvement, production, and uses. Wiley-Blackwell, Harrisongburg, pp 282–306

    Google Scholar 

  45. Sadras VO, Calderini D (2009) Crop physiology. Applications for genetic improvement and agronomy. Academic, Burlington

    Google Scholar 

  46. Loss SP, Siddique KHM (1994) Morphological and physiological traits associated with wheat yield increases in Mediterranean environments. Adv Agron 52:229–276

    Article  CAS  Google Scholar 

  47. Passioura JB (2002) Environmental biology and crop improvement. Funct Plant Biol 29:537–546

    Article  Google Scholar 

  48. Richards RA (1991) Crop improvement for temperate Australia, future opportunities. Field Crop Res 26:141–169

    Article  Google Scholar 

  49. Worland AJ (1996) The influence of flowering time genes on environmental adaptability in European wheats. Euphytica 89:49–57

    Article  Google Scholar 

  50. Slafer GA, Rawson HM (1994) Sensitivity of wheat phasic development to major environmental factors: a re-examination of some assumptions made by physiologists and modellers. Aust J Plant Physiol 21:393–426

    Article  Google Scholar 

  51. Goldringer I, Prouin C, Rousset M, Galic N, Bonnin I (2006) Rapid differentiation of experimental populations of wheat for heading time in response to local climatic conditions. Ann Bot 98:805–817

    Article  Google Scholar 

  52. Young KJ, Elliott GA (1994) An evaluation of barley accessions for adaptation to the cereal growing regions of western Australia, based on time to ear emergence. Aust J Agr Res 45:75–92

    Article  Google Scholar 

  53. Hoogendoorn J (1985) A reciprocal F1 monosomic analysis of the genetic control of time of ear emergence, number of leaves and number of spikelets in wheat (Triticum aestivum L.). Euphytica 34:545–558

    Article  Google Scholar 

  54. Lasa JM, Igartua E, Ciudad FJ, Codesal P, Garcia EV, Gracia MP, Medina B, Romagosa I, Molina-Cano JL, Montoya JL (2001) Morphological and agronomical diversity patterns in the Spanish barley core collection. Hereditas 135:217–225

    Article  CAS  Google Scholar 

  55. van Oosterom EJ, Acevedo E (1992) Adaptation of barley (Hordeum vulgare L.) to harsh Mediterranean environments. Euphytica 62:15–27

    Article  Google Scholar 

  56. Álvaro F, Isidro J, Villegas D, García del Moral LF, Royo C (2008) Breeding effects on grain filling, biomass partitioning, and remobilization in Mediterranean durum wheat. Agron J 100:361–370

    Article  Google Scholar 

  57. Jackson PA, Byth DE, Fischer KS, Johnston RP (1994) Genotype × environment interactions in progeny from a barley cross: II. Variation in grain yield, yield components and dry matter production among lines with similar times to anthesis. Field Crop Res 37:11–23

    Article  Google Scholar 

  58. Van Oosterom EJ, Kleijn DM, Ceccarelli S, Nachit MM (1993) Genotype-by-environment interactions of Barley in the Mediterranean region. Crop Sci 33:669–674

    Article  Google Scholar 

  59. Appendino ML, Slafer GA (2003) Earliness per se and its dependence upon temperature in diploid wheat lines differing in the major gene Eps-A m 1 alleles. J Agric Sci 141:149–154

    Article  CAS  Google Scholar 

  60. Bullrich L, Appendino ML, Tranquilli G, Lewis S, Dubcovsky J (2002) Mapping of a thermo-sensitive earliness per se gene on Triticum monococcum chromosome 1Am. Theor Appl Genet 105:585–593

    Article  CAS  Google Scholar 

  61. Lewis S, Faricelli ME, Appendino ML, Valárik M, Dubcovsky J (2008) The chromosome region including the earliness per se locus Eps-A m 1 affects the duration of early developmental phases and spikelet number in diploid wheat. J Exp Bot 59:3595–3607

    Article  CAS  Google Scholar 

  62. Slafer GA (1996) Differences in phasic development rate amongst wheat cultivars independent of responses to photoperiod and vernalization. A viewpoint of the intrinsic earliness hypothesis. J Agric Sci 126:403–419

    Article  Google Scholar 

  63. Slafer GA, Rawson HM (1995) Base and optimum temperatures vary with genotype and stage of development in wheat. Plant Cell Environ 18:671–679

    Article  Google Scholar 

  64. Cockram J, Jones H, Leigh FJ, O’Sullivan D, Powell W, Laurie DA, Greenland A (2007) Control of flowering time in temperate cereals, genes, domestication, and sustainable productivity. J Exp Bot 58:1231–1244

    Article  CAS  Google Scholar 

  65. Eagles HA, Cane K, Vallance N (2009) The flow of alleles of important photoperiod basically and vernalisation genes through Australian wheat. Crop Pasture Sci 60:646–657

    Article  CAS  Google Scholar 

  66. Baum M, Grando S, Backes G, Jahoor A, Sabbagh A, Ceccarelli S (2003) QTLs for agronomic traits in the Mediterranean environment identified in recombinant inbred lines of the cross ‘Arta’ × H. spontaneum 41-1. Theor Appl Genet 107:1215–1225

    Article  CAS  Google Scholar 

  67. Bezant J, Laurie D, Pratchett N, Chojecki J, Kearsey M (1996) Marker regression mapping of QTL controlling flowering time and plant height in a spring barley (Hordeum vulgare L.) cross. Heredity 77:64–73

    Article  CAS  Google Scholar 

  68. Li JZ, Huang XQ, Heinrichs F, Ganal MW, Röder MS (2006) Analysis of QTLs for yield components, agronomic traits and disease resistance in an advanced backcross population of spring barley. Genome 49:454–466

    Article  CAS  Google Scholar 

  69. Tinker NA, Mather DE, Blake TK, Briggs KG, Choo TM, Dahleen L, Dofing SM, Falk DE, Ferguson T, Franckowiak JD, Graf R, Hayes PM, Hoffman D, Irvine RB, Kleinhofs A, Legge W, Rossnagel BG, Saghai Maroof MA, Scoles GJ, Shugar LP, Steffenson B, Ullrich S, Kasha KJ (1996) Regions of the genome that affect agronomic performance in two-row barley. Crop Sci 36:1053–1062

    Article  Google Scholar 

  70. Cuesta-Marcos A, Casas AM, Hayes PM, Gracia MP, Lasa JM, Ciudad F, Codesal P, Molina-Cano JL, Igartua E (2009) Yield QTL affected by heading date in Mediterranean grown barley. Plant Breeding 128:46–53

    Article  CAS  Google Scholar 

  71. Romagosa I, Ullrich SE, Han F, Hayes PM (1996) Use of the AMMI model in QTL mapping for adaptation in barley. Theor Appl Genet 93:30–37

    Article  Google Scholar 

  72. Malosetti M, Voltas J, Romagosa I, Ullrich SE, van Eeuwijk FA (2004) Mixed models including environmental variables for studying QTL by environment interaction. Euphytica 137:139–145

    Article  CAS  Google Scholar 

  73. Beales J, Turner A, Griffiths S, Snape JW, Laurie DA (2007) A Pseudo-Response Regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor Appl Genet 115:721–733

    Article  CAS  Google Scholar 

  74. Wilhelm EP, Turner AS, Laurie DA (2009) Photoperiod insensitive Ppd-A1a mutations in tetraploid wheat (Triticum durum Desf.). Theor Appl Genet 118:285–294

    Article  CAS  Google Scholar 

  75. Laurie DA, Pratchett N, Bezant JH, Snape JW (1995) RFLP mapping of five major genes and eight quantitative trait loci controlling flowering time in a winter × spring barley (Hordeum vulgare L.) cross. Genome 38:575–585

    Article  CAS  Google Scholar 

  76. Jones H, Leigh FJ, Mackay I, Bower MA, Smith LMJ, Charles MP, Jones G, Jones MJ, Brown TA, Powell W (2008) Population-based resequencing reveals that the flowering time adaptation of cultivated barley originated East of the Fertile Crescent. Mol Biol Evol 25:2211–2219

    Article  CAS  Google Scholar 

  77. Faure S, Higgins J, Turner A, Laurie DA (2007) The flowering locus T-like gene family in barley (Hordeum vulgare). Genetics 176:599–609

    Article  CAS  Google Scholar 

  78. Fu D, Szűcs P, Liuling Y, Helguera M, Skinner JS, Zitzewitz J, Hayes PM, Dubcovsky J (2005) Large deletions within the first intron in Vrn-1 are associated with spring growth habit in barley and wheat. Mol Genet Genomics 273:54–65

    Article  CAS  Google Scholar 

  79. Trevaskis B, Bagnall DJ, Ellis MH, Peacock WJ, Dennis ES (2003) MADS box genes control vernalization-induced flowering in cereals. Proc Natl Acad Sci 22:13099–13104

    Article  CAS  Google Scholar 

  80. Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene Vrn1. Proc Natl Acad Sci 100:6263–6268

    Article  CAS  Google Scholar 

  81. Distelfeld A, Tranquilli G, Chengxia L, Yan L, Dubcovsky J (2009) Genetic and molecular characterization of the Vrn2 loci in tetraploid wheat. Plant Physiol 149:245–257

    Article  CAS  Google Scholar 

  82. Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, San Miguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004) The wheat Vrn2 gene, a flowering repressor down-regulated by vernalization. Science 303:1640–1644

    Article  CAS  Google Scholar 

  83. Casao MC, Igartua E, Karsai I, Bhat PR, Cuadrado N, Gracia MP, Lasa JM, Casas AM (2011) Introgression of an intermediate VRNH1 allele in barley (Hordeum vulgare L.) leads to reduced vernalization requirement without affecting freezing tolerance. Mol Breed. doi:10.1007/s11032-010-9497

    Google Scholar 

  84. Bonnin I, Rousset M, Madur D, Sourdille P, Dupuits C, Brunel D, Goldringer I (2008) FT genome A and D polymorphisms are associated with the variation of earliness components in hexaploid wheat. Theor Appl Genet 116:383–394

    Article  CAS  Google Scholar 

  85. Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J (2006) The wheat and barley vernalization gene Vrn3 is an orthologue of FT. Proc Natl Acad Sci 103:19581–19586

    Article  CAS  Google Scholar 

  86. Börner A, Buck-Sorlin GH, Hayes PM, Malyshev S, Korzun V (2002) Molecular mapping of major genes and quantitative trait loci determining flowering time in response to photoperiod in barley. Plant Breed 121:129–132

    Article  Google Scholar 

  87. Franckowiak JD (1997) Revised linkage maps for morphological markers in barley, Hordeum vulgare. Barley Genet Newsl 26:9–21

    Google Scholar 

  88. Lundqvist U, Franckowiak JD, Konishi T (1997) New and revised descriptions of barley genes. Barley Genet Newsl 26:22–516

    Google Scholar 

  89. Stracke S, Börner A (1998) Molecular mapping of the photoperiod response gene ea7 in barley. Theor Appl Genet 97:797–800

    Article  CAS  Google Scholar 

  90. Chen A, Baumann U, Fincher GB, Collins NC (2009) Flt-2L, a locus in barley controlling flowering time, spike density, and plant height. Funct Integr Genomics 9:243–254

    Article  CAS  Google Scholar 

  91. Scarth R, Law CN (1983) The location of the photoperiodic gene, Ppd2, and an additional factor for ear-emergence time on chromosome 2B of wheat. Heredity 51:607–619

    Article  Google Scholar 

  92. Shindo C, Tsujimoto H, Sasakuma T (2003) Segregation analysis of heading traits in hexaploid wheat utilizing recombinant inbred lines. Heredity 90:56–63

    Article  CAS  Google Scholar 

  93. Yoshida T, Nishida H, Zhu J, Nitcher R, Distelfed A, Akashi Y, Kato K, Dubcovsky J (2010) Vrn-D4 is a vernalization gene located on the centromeric region of chromosome 5D in hexaploid wheat. Theor Appl Genet 120:543–552

    Article  CAS  Google Scholar 

  94. Kato K, Miura H, Sawada S (2002) Characterization of QEet.ocs-5A.1, a quantitative trait locus for ear emergence time on wheat chromosome 5AL. Plant Breed 121:389–393

    Article  CAS  Google Scholar 

  95. Law CN, Worland AJ (1997) Genetic analysis of some flowering time and adaptative traits in wheat. New Phytol 137:19–28

    Article  Google Scholar 

  96. Griffiths S, Simmonds J, Leverington M, Wang Y, Fish L, Sayers L, Alibert L, Orford S, Wingen L, Herry L, Faure S, Laurie D, Bilham L, Snape J (2009) Meta-QTL analysis of the genetic control of ear emergence in elite European winter wheat germplasm. Theor Appl Genet 119:383–395

    Article  CAS  Google Scholar 

  97. Kuchel H, Hollamby G, Langridge P, Williams K, Jefferies SP (2006) Identification of genetic loci associated with ear-emergence in bread wheat. Theor Appl Genet 113:1103–1112

    Article  CAS  Google Scholar 

  98. Sourdille P, Snape JW, Charmet G, Nakata N, Bernard S, Bernard M (2000) Detection of QTLs for heading time and photoperiod response in wheat using a doubled-haploid population. Genome 43:487–494

    Article  CAS  Google Scholar 

  99. Boer M, Wright D, Feng L, Podlich D, Luo L, Cooper M, van Eeuwijk FA (2007) A mixed model QTL analysis for multiple environment trial data using environmental covariables for QTLxE, with an example in maize. Genetics 177:1801–1813

    Article  Google Scholar 

  100. Payne RW, Murray DA, Harding SA, Baird DB, Soutar DM (2010) GenStat for windows (13th edition) introduction. VSN International, Hemel Hempstead

    Google Scholar 

  101. Limin A, Corey A, Hayes PM, Fowler DB (2007) Low-temperature acclimation of barley cultivars used as parents in mapping populations: response to photoperiod, vernalization and phenological development. Planta 226:139–146

    Article  CAS  Google Scholar 

  102. Slafer GA, Abeledo LG, Miralles DJ, González FG, Whitechurch EM (2001) Photoperiod sensitivity during stem elongation as an avenue to raise potential yield in wheat. Euphytica 119:191–197

    Article  Google Scholar 

  103. Slafer GA, Araus JL, Royo C, García del Moral LF (2005) Promising eco-physiological traits for genetic improvement of cereal yields in Mediterranean environments. Ann Appl Biol 146:61–70

    Article  Google Scholar 

  104. Fischer RA (2007) Understanding the physiological basis of yield potential in wheat. J Agric Sci 145:99–113

    Article  Google Scholar 

  105. Miralles DJ, Slafer GA (2007) Sink limitations to yield in wheat, how could it be reduced? J Agric Sci 145:139–149

    Article  Google Scholar 

  106. Halloran GM, Pennell AL (1982) Duration and rate of development phases in wheat in two environments. Ann Bot 49:115–121

    Google Scholar 

  107. Whitechurch EM, Slafer GA, Miralles DJ (2007) Variability in the duration of stem elongation in wheat and barley genotypes. J Agron Crop Sci 193:138–145

    Article  Google Scholar 

  108. Borràs-Gelonch G, Rebetzke G, Richards R, Romagosa I (2011b) Genetic control of duration of pre-anthesis phases in wheat (Triticum aestivum L.) and relationships to leaf appearance, tillering and dry matter accumulation. Journal of Experimental Botany, doi: 10.1093/jxb/err230

    Google Scholar 

  109. Appleyard M, Kirby EJM, Fellowes G (1982) Relationships between the duration of phases in the pre-anthesis life cycle of spring barley. Aust J Agr Res 33:917–925

    Article  Google Scholar 

  110. Borràs G, Romagosa I, van Eeuwijk F, Slafer GA (2009) Genetic variability in the duration of pre-heading phases and relationships with leaf appearance and tillering dynamics in a barley population. Field Crop Res 113:95–104

    Article  Google Scholar 

  111. Borràs-Gelonch G, Slafer GA, Casas A, van Eeuwijk F, Romagosa I (2010) Genetic control of pre-heading phases and other traits related to development in a double haploid barley population (Hordeum vulgare L.). Field Crop Res 119:36–47

    Article  Google Scholar 

  112. Kernich GC, Halloran GM, Flood RG (1995) Variation in development patterns of wild barley (Hordeum spontaneum L) and cultivated barley (H vulgare L). Euphytica 82:105–115

    Article  Google Scholar 

  113. Kernich GC, Halloran GM, Flood RG (1997) Variation in duration of pre-anthesis phases of development in barley (Hordeum vulgare). Aust J Agr Res 48:59–66

    Article  Google Scholar 

  114. Kitchen BM, Rasmusson DC (1983) Duration and inheritance of leaf initiation, spike initiation and spike growth in barley. Crop Sci 23:939–943

    Article  Google Scholar 

  115. González FG, Slafer GA, Miralles DJ (2002) Vernalization and photoperiod responses in wheat pre-flowering reproductive phases. Field Crop Res 74:183–195

    Article  Google Scholar 

  116. Miralles DJ, Richards RA (2000) Responses of leaf and tiller emergence and primordium initiation in wheat and barley to interchanged photoperiod. Ann Bot 85:655–663

    Article  Google Scholar 

  117. González FG, Slafer GA, Miralles DJ (2005) Pre-anthesis development and number of fertile florets in wheat as affected by photoperiod sensitivity genes Ppd-D1 and Ppd-B1. Euphytica 146:253–269

    Article  Google Scholar 

  118. Zhou Y, Li W, Wu W, Chen Q, Mao D, Worland AJ (2001) Genetic dissection of heading time and its components in rice. Theor Appl Genet 102:1236–1242

    Article  CAS  Google Scholar 

  119. Borràs-Gelonch G, Denti M, Thomas WTB, Romagosa I (2011a) Genetic control of pre-heading phases in the Steptoe x Morex barley population under different conditions of photoperiod and temperature. Euphytica doi: 10.1007/s10681-011-0526-7

    Google Scholar 

  120. Denis JB (1988) Two-way analysis using covariates. Statistics 19:123–132

    Article  Google Scholar 

  121. van Eeuwijk FA, Denis JB, Kang MS (1996) Incorporating additional information on genotypes and environments in models for two-way genotype by environment tables. In: Kang MS, Gauch HG (eds) Genotype-by-environment interaction. CRC Press, Boca Raton, pp 15–50

    Chapter  Google Scholar 

  122. Yates F, Cochran WG (1938) The analysis of groups of experiments. J Agric Sci 28:556–580

    Article  Google Scholar 

  123. Finlay KW, Wilkinson GN (1963) The analysis of adaptation in a plant breeding programme. Aust J Agr Res 14:742–754

    Article  Google Scholar 

  124. van Eeuwijk FA (1995) Linear and bilinear models for the analysis of multi-environment trials: I. An inventory of models. Euphytica 84:1–7

    Article  Google Scholar 

  125. Denis JB, Gower JC (1996) Asymptotic confidence regions for biadditive models: interpreting genotype-environment interactions. Appl Stat 45:479–492

    Article  Google Scholar 

  126. Gabriel KR (1998) Generalised bilinear regression. Biometrika 85:689–700

    Article  Google Scholar 

  127. van Eeuwijk FA (1995) Multiplicative interaction in generalized linear models. Biometrics 51:1017–1032

    Article  Google Scholar 

  128. Gabriel KR (1978) Least squares approximation of matrices by additive and multiplicative models. J Roy Stat Soc Ser B 40:186–196

    Google Scholar 

  129. Gauch HG (1988) Model selection and validation for yield trials with interaction. Biometrics 44:705–715

    Article  Google Scholar 

  130. Gollob HF (1968) A statistical model which combines features of factor analysis and analysis of variance techniques. Psychometrika 33:73–115

    Article  CAS  Google Scholar 

  131. Mandel J (1969) The partitioning of interaction in analysis of variance. J Res NBS 73B:309–328

    Google Scholar 

  132. Yan W, Kang MS (2003) GGE biplot analysis: a graphical tool for breeders, geneticists, and agronomists. CRC Press, Boca Raton

    Google Scholar 

  133. Yan W, Hunt LA, Sheng Q, Szlavnics Z (2000) Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Sci 40:597–605

    Article  Google Scholar 

  134. Cornelius PL (1993) Statistical tests and retention of terms in the additive main effects and multiplicative interaction model for cultivar trials. Crop Sci 33:1186–1193

    Article  Google Scholar 

  135. Kempton RA (1984) The use of biplots in interpreting variety by environment interactions. J Agric Sci 103:123–135

    Article  Google Scholar 

  136. Molina-Cano JL, García del Moral LF, Ramos JM, García del Moral MB, Romagosa I, Roca de Togores F (1990) Quantitative phenotypical expression of three mutant genes in barley and the basis for defining an ideotype for Merditerranean environments. Theor Appl Genet 80:762–768

    Article  Google Scholar 

  137. Romagosa I, Fox PN, del Moral G, Ramos JM, García del Moral B, Roca de Togores F, Molina-Cano JL (1993) Integration of statistical and physiological analyses of adaptation of near-isogenic barley lines. Theor Appl Genet 86:822–826

    Article  Google Scholar 

  138. Vargas M, Crossa J, van Eeuwijk FA, Ramírez ME, Sayre K (1999) Using AMMI, factorial regression, and partial least squares regression models for interpreting genotype × environment interaction. Crop Sci 39:955–967

    Article  Google Scholar 

  139. Voltas J, van Eeuwijk FA, Sombrero A, Lafarga A, Igartua E, Romagosa I (1999) Integrating statistical and ecophysiological analysis of genotype by environment interaction for grain filling of barley in Mediterranean areas I. Individual grain weight. Field Crop Res 62:63–74

    Article  Google Scholar 

  140. Voltas J, van Eeuwijk FA, Araus JL, Romagosa I (1999) Integrating statistical and ecophysiological analysis of genotype by environment interaction for grain filling of barley in Mediterranean areas II. Grain growth. Field Crop Res 62:75–84

    Article  Google Scholar 

  141. Royo C, Rodríguez A, Romagosa I (1993) Differential adaptation of complete and substituted triticale to acid soils. Plant Breed 111:113–119

    Article  Google Scholar 

  142. Lynch M, Walsh JB (1998) Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland

    Google Scholar 

  143. van Eeuwijk FA, Crossa J, Vargas M, Ribaut JM (2001) Variants of factorial regression for analysing QTL by environment interaction. In: Gallais A, Dillmann C, Goldringer I (eds) Eucarpia, quantitative genetics and breeding methods: the way ahead, vol 96, INRA Editions Versailles Les Colloques series. INRA, Paris, pp 107–116

    Google Scholar 

  144. van Eeuwijk FA, Crossa J, Vargas M, Ribaut JM (2002) Analysing QTL by environment interaction by factorial regression, with an application to the CIMMYT drought and low nitrogen stress programme in maize. In: Kang MS (ed) Quantitative genetics, genomics and plant breeding. CAB International, Wallingford, pp 245–256

    Google Scholar 

  145. Piepho HP, Pillen K (2004) Mixed modeling for QTL × environment interaction analysis. Euphytica 137:147–153

    Article  CAS  Google Scholar 

  146. IRRI (2008) CropStat for windows, version 5. Biometrics and Bioinformatics Unit, International Rice Research Institute, Los Baños, Philippines. http://www.irri.org/science/software/irristat.asp. Accessed 27 Feb 2008

  147. Gauch HG (2007) MATMODEL version 3.0: Open source software for AMMI and related analyses. Crop and Soil Sciences, Cornell University, Ithaca. http://www.css.cornell.edu/staff/gauch. Accessed 27 Feb 2008

  148. Balzarini MG, Bruno C, Peña A, Teich I, Di Rienzo JA (2010) Estadística en Biotecnología. Aplicaciones en Info-Gen. Grupo InfoStat, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Argentina

    Google Scholar 

  149. Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2008) InfoStat, versión 2008. Grupo InfoStat, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Argentina

    Google Scholar 

  150. Kang MS (2003) Handbook of formulas and software for plant geneticists and breeders. Haworth Press, Binghamton

    Google Scholar 

  151. Friedman J, Hastie T, Tibshirani R (2008) Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9:432–441

    Article  Google Scholar 

  152. Bernardo R, Yu J (2007) Prospects for genomewide selection for quantitative traits in maize. Crop Sci 47:1082–1090

    Article  Google Scholar 

  153. Heffner EL, Sorrells ME, Jannink JL (2009) Genomic selection for crop improvement. Crop Sci 49:1–12

    Article  CAS  Google Scholar 

  154. Jannink JL, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Brief Funct Genomics 9:166–177

    Article  CAS  Google Scholar 

  155. Bertin N, Martre P, Génard M, Quilot B, Salon C (2010) Under what circumstances can process-based simulation models link genotype to phenotype for complex traits? Case-study of fruit and grain quality traits. J Exp Bot 61:955–967

    Article  CAS  Google Scholar 

  156. Chenu K, Chapman SC, Tardieu F, McLean G, Welcker C, Hammer GL (2009) Simulating the yield impacts of organ-level quantitative trait loci associated with drought response in maize – a ‘gene-to-phenotype’ modeling approach. Genetics 183:1507–1523

    Article  Google Scholar 

  157. Hammer G, Cooper M, Tardieu F, Welch S, Walsh B, van Eeuwijk FA, Chapman S, Podlich D (2006) Models for navigating biological complexity in breeding improved crop plants. Trends Plant Sci 11:587–593

    Article  CAS  Google Scholar 

Books and Reviews

  • Ceccarelli S, Guimaraës EP, Weltzien E (eds) (2009) Participatory plant breeding. FAO, Rome

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Romagosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Cite this entry

Romagosa, I., Borràs-Gelonch, G., Slafer, G., van Eeuwijk, F. (2012). Genotype by Environment Interaction and Adaptation . In: Meyers, R.A. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0851-3_199

Download citation

Publish with us

Policies and ethics