Encyclopedia of Sustainability Science and Technology

2012 Edition
| Editors: Robert A. Meyers

Genotype by Environment Interaction and Adaptation

  • Ignacio Romagosa
  • Gisela Borràs-Gelonch
  • Gustavo Slafer
  • Fred van Eeuwijk
Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-0851-3_199


One of the first decisions farmers have to take is the selection of the variety to be grown in their fields based on expectation of economic returns, generally, in the form of the highest attainable yield. This is a critical choice that strongly determines the sustainability of the agricultural system. However, this is by no means trivial as it is very hard to identify the “best” variety across a diverse set of environments subjected to complex biotic and abiotic factors and interactions generally causing significant changes in varietal rank. Therefore, a major objective in plant breeding programs is to determine the potential adaptation of advanced breeding lines across a range of agroecological conditions. William S. Gosset (who signed as “Student [1]” in a landmark publication introducing the t distribution) wrote at the onset of modern breeding that the ultimate purpose of field experimentation was to determine what varieties pay farmers best. He thought that the design...

This is a preview of subscription content, log in to check access.


Primary Literature

  1. 1.
    Student (1908) The probable error of a mean. Biometrika 6:1–25Google Scholar
  2. 2.
    Annicchiarico P (2002) Genotype × environment interactions: challenges and opportunities for plant breeding and cultivar recommendations. FAO plant production and protection paper no. 174. FAO, RomeGoogle Scholar
  3. 3.
    Annicchiarico P (2009) Coping with and exploiting genotype-by-environment interactions. In: Ceccarelli S, Guimaraës EP, Weltzien E (eds) Participatory plant breeding. FAO, Rome, pp 519–564Google Scholar
  4. 4.
    Cooper M, Hammer GL (eds) (1996) Plant adaptation and crop improvement. CAB International, WallingfordGoogle Scholar
  5. 5.
    Fox PN, Crossa J, Romagosa I (1997) Multi-environment testing and genotype by environment interaction. In: Kempton RA, Fox PN (eds) Statistical methods for plant variety evaluation. Chapman and Hall, London, pp 117–137CrossRefGoogle Scholar
  6. 6.
    Gauch HG (1992) Statistical analysis of regional yield trials. Elsevier, AmsterdamGoogle Scholar
  7. 7.
    Kang MS (1998) Using genotype-by-environment interaction for crop cultivar development. Adv Agron 62:199–252CrossRefGoogle Scholar
  8. 8.
    Kang MS, Gauch HG (1996) Genotype by environment interaction: new perspectives. CRC Press, Boca RatonGoogle Scholar
  9. 9.
    Kempton RA, Fox PN (1997) Statistical methods for plant variety evaluation. Chapman and Hall, LondonGoogle Scholar
  10. 10.
    Romagosa I, Fox PN (1993) Genotype-environment interaction and adaptation. In: Hayward MD, Bosemark NO, Romagosa I (eds) Plant breeding, principles and prospects. Chapman and Hall, London, pp 373–390CrossRefGoogle Scholar
  11. 11.
    Romagosa I, van Eeuwijk FA, Thomas WTB (2009) Statistical analyses of genotype by environment data. In: Carena M (ed) Handbook of plant breeding, vol 3, Cereals. Springer, New York, pp 291–331Google Scholar
  12. 12.
    van Eeuwijk FA (2006) Genotype by environment interaction: basics and beyond. In: Lamkey K, Lee M (eds) Plant breeding: the Arnell Hallauer international symposium. Blackwell, Oxford, pp 155–170Google Scholar
  13. 13.
    van Eeuwijk FA, Malosetti M, Yin X, Struik PC, Stam P (2005) Statistical models for genotype by environment data: from conventional ANOVA models to eco-physiological QTL models. Aust J Agr Res 56:883–894CrossRefGoogle Scholar
  14. 14.
    Voltas J, van Eeuwijk FA, Igartua E, Garcia del Moral LF, Molina-Cano JL, Romagosa I (2002) Genotype by environment interaction and adaptation in barley breeding: basic concepts and methods of analysis. In: Slafer GA, Molina-Cano JL, Savin R, Araus JL, Romagosa I (eds) Barley science: recent advances from molecular biology to agronomy of yield and quality. Haworth Pres, Binghamton, pp 205–241Google Scholar
  15. 15.
    Paterson AH (1998) Molecular dissection of complex traits. CRC Press, Boca RatonGoogle Scholar
  16. 16.
    Cooper M, van Eeuwijk FA, Hammer GL, Podlich DW, Messina C (2009) Modeling QTL for complex traits: detection and context for plant breeding. Curr Opin Plant Biol 12:231–240CrossRefGoogle Scholar
  17. 17.
    van Eeuwijk FA, Bink MCAM, Chenu K, Chapman SC (2010) Detection and use of QTL for complex traits in multiple environments. Curr Opin Plant Biol 13:193–205CrossRefGoogle Scholar
  18. 18.
    Calderini DF, Slafer GA (1999) Has yield stability changed with genetic improvement of wheat yield? Euphytica 107:51–59CrossRefGoogle Scholar
  19. 19.
    Foulkes MJ, Sylvester-Bradley R, Weightman R, Snape J (2007) Identifying physiological traits associated with improved drought resistance in winter wheat. Field Crop Res 103:11–24CrossRefGoogle Scholar
  20. 20.
    Reynolds MP, Borlaug NE (2006) Impacts of breeding on international collaborative wheat improvement. J Agric Sci 144:3–17, CambridgeCrossRefGoogle Scholar
  21. 21.
    Slafer GA, Araus JL (2007) Physiological traits for improving wheat yield under a wide range of conditions. In: Spiertz JHJ, Struik PC, van Laar HH (eds) Scale and complexity in plant systems research: gene-plant-crop relations. Springer, Dordrecht, pp 147–156CrossRefGoogle Scholar
  22. 22.
    Fischer RA, Edmeades GO (2010) Breeding and cereal yield progress. Crop Sci 50:S85–S98CrossRefGoogle Scholar
  23. 23.
    Reynolds MP, Foulkes J, Slafer GA, Berry P, Parry MJ, Snape JW, Angus WJ (2009) Raising yield potential in wheat. J Exp Bot 60:1899–1918CrossRefGoogle Scholar
  24. 24.
    Slafer GA (2003) Genetic basis of yield as viewed from a crop physiologist’s perspective. Ann Appl Biol 142:117–128CrossRefGoogle Scholar
  25. 25.
    Siddique KHM, Belford RK, Perry MW, Tennant D (1989) Growth, development and light interception of old and modern wheat cultivars in a Mediterranean environment. Aust J Agr Res 40:473–487Google Scholar
  26. 26.
    Slafer GA, Andrade FH (1993) Physiological attributes related to the generation of grain yield in bread wheat cultivars released at different eras. Field Crop Res 31:351–367CrossRefGoogle Scholar
  27. 27.
    Miralles DF, Katz SD, Colloca A, Slafer GA (1998) Floret development in near isogenic wheat lines differing in plant height. Field Crop Res 59:21–30CrossRefGoogle Scholar
  28. 28.
    Miralles DJ, Slafer GA (1995) Yield, biomass and yield components in dwarf, semidwarf and tall isogenic lines of spring wheat under recommended and late sowing dates. Plant Breed 114:392–396CrossRefGoogle Scholar
  29. 29.
    Richards RA (1996) Increasing yield potential in wheat – source and sink limitations. In: Reynolds MP, Rajaram S, McNab A (eds) Increasing yield potential in wheat: breaking the barriers. CIMMYT, Mexico, pp 134–149Google Scholar
  30. 30.
    Foulkes J, Slafer GA, Davies WJ, Berry P, Sylvester-Bradley R, Martre P, Calderini DF, Griffiths S, Reynolds M (2011) Raising yield potential of wheat. III. Optimizing partitioning to grain while maintaining lodging resistance. J Exp Bot 62:469–486CrossRefGoogle Scholar
  31. 31.
    Denison RF (2009) Darwinian agriculture: real, imaginary and complex trade-offs as constraints and opportunities. In: Sadras VO, Calderini D (eds) Crop physiology. Applications for genetic improvement and agronomy. Academic, Burlington, pp 215–234Google Scholar
  32. 32.
    Grando S, Ceccarelli S (2009) Breeding for quantitative variables. Part 3: breeding for resistance to abiotic stress. In: Ceccarelli S, Guimaraës EP, Weltzien E (eds) Participatory plant breeding. FAO, Rome, pp 391–417Google Scholar
  33. 33.
    Cooper M, Fox PN (1996) Environmental characterization based on probe and reference genotypes. In: Cooper M, Hammer GL (eds) Plant adaptation and crop improvement. CAB International, Wallingford, pp 529–547Google Scholar
  34. 34.
    Rasmusson DC (1996) Germplasm is paramount. In: Reynolds MP, Rajaram S, McNab A (eds) Increasing yield potential in wheat: breaking the barriers. CIMMYT, Mexico, pp 28–37Google Scholar
  35. 35.
    Hayes PM, Liu BH, Knapp SJ, Chen F, Jones B, Blake T, Franckowiak J, Rasmusson D, Sorrells M, Ullrich SE, Wesenberg D, Kleinhofs A (1993) Quantitative trait locus effects and environmental interaction in a sample of North American barley germplasm. Theor Appl Genet 87:392–401CrossRefGoogle Scholar
  36. 36.
    Comadran J, Thomas WTB, van Eeuwijk FA, Ceccarelli S, Grando S, Stanca AM, Pecchioni N, Akar T, Al-Yassin A, Benbelkacem A, Ouabbou H, Bort J, Romagosa I, Hacket CA, Russell JR (2009) Patterns of genetic diversity and linkage disequilibrium in a highly structured Hordeum vulgare association mapping population for the Mediterranean basin. Theor Appl Genet 119:175–187CrossRefGoogle Scholar
  37. 37.
    Cavanagh C, Morell M, Mackay I, Powell P (2008) From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants. Curr Opin Plant Biol 11:215–221CrossRefGoogle Scholar
  38. 38.
    Buckler ES, Holland JB, Bradbury PJ et al (2009) The genetic architecture of maize flowering time. Science 325:714–718CrossRefGoogle Scholar
  39. 39.
    Yu J, Holland JB, McMullen MD, Buckler ES (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178:539–551CrossRefGoogle Scholar
  40. 40.
    Huang X, Paulo MJ, Boer M, Effgen S, Keizer P, Koornneef M, van Eeuwijk FA (2011) Analysis of natural allelic variation in Arabidopsis using a multiparent recombinant inbred line population. Proc Natl Acad Sci 108:4488–4493CrossRefGoogle Scholar
  41. 41.
    Araus JL, Bort J, Steduto P, Villegas D, Royo C (2003) Breeding cereals for Mediterranean conditions: ecophysiological clues for biotechnology application. Ann Appl Biol 142:129–141CrossRefGoogle Scholar
  42. 42.
    Araus JL, Slafer GA, Royo C, Serret MD (2008) Breeding for yield potential and stress adaptation in cereals. Crit Rev Plant Sci 27:377–412CrossRefGoogle Scholar
  43. 43.
    Araus JL, Slafer GA, Reynolds MO, Royo C (2009) Breeding for quantitative variables. Part 5: breeding for yield potential. In: Ceccarelli S, Guimaraës EP, Weltzien E (eds) Participatory plant breeding. FAO, Rome, pp 449–477Google Scholar
  44. 44.
    Cattivelli L, Ceccarelli S, Romagosa I, Stanca M (2011) Abiotic stresses in barley: problems and solutions. In: Ullrich SE (ed) Barley: improvement, production, and uses. Wiley-Blackwell, Harrisongburg, pp 282–306Google Scholar
  45. 45.
    Sadras VO, Calderini D (2009) Crop physiology. Applications for genetic improvement and agronomy. Academic, BurlingtonGoogle Scholar
  46. 46.
    Loss SP, Siddique KHM (1994) Morphological and physiological traits associated with wheat yield increases in Mediterranean environments. Adv Agron 52:229–276CrossRefGoogle Scholar
  47. 47.
    Passioura JB (2002) Environmental biology and crop improvement. Funct Plant Biol 29:537–546CrossRefGoogle Scholar
  48. 48.
    Richards RA (1991) Crop improvement for temperate Australia, future opportunities. Field Crop Res 26:141–169CrossRefGoogle Scholar
  49. 49.
    Worland AJ (1996) The influence of flowering time genes on environmental adaptability in European wheats. Euphytica 89:49–57CrossRefGoogle Scholar
  50. 50.
    Slafer GA, Rawson HM (1994) Sensitivity of wheat phasic development to major environmental factors: a re-examination of some assumptions made by physiologists and modellers. Aust J Plant Physiol 21:393–426CrossRefGoogle Scholar
  51. 51.
    Goldringer I, Prouin C, Rousset M, Galic N, Bonnin I (2006) Rapid differentiation of experimental populations of wheat for heading time in response to local climatic conditions. Ann Bot 98:805–817CrossRefGoogle Scholar
  52. 52.
    Young KJ, Elliott GA (1994) An evaluation of barley accessions for adaptation to the cereal growing regions of western Australia, based on time to ear emergence. Aust J Agr Res 45:75–92CrossRefGoogle Scholar
  53. 53.
    Hoogendoorn J (1985) A reciprocal F1 monosomic analysis of the genetic control of time of ear emergence, number of leaves and number of spikelets in wheat (Triticum aestivum L.). Euphytica 34:545–558CrossRefGoogle Scholar
  54. 54.
    Lasa JM, Igartua E, Ciudad FJ, Codesal P, Garcia EV, Gracia MP, Medina B, Romagosa I, Molina-Cano JL, Montoya JL (2001) Morphological and agronomical diversity patterns in the Spanish barley core collection. Hereditas 135:217–225CrossRefGoogle Scholar
  55. 55.
    van Oosterom EJ, Acevedo E (1992) Adaptation of barley (Hordeum vulgare L.) to harsh Mediterranean environments. Euphytica 62:15–27CrossRefGoogle Scholar
  56. 56.
    Álvaro F, Isidro J, Villegas D, García del Moral LF, Royo C (2008) Breeding effects on grain filling, biomass partitioning, and remobilization in Mediterranean durum wheat. Agron J 100:361–370CrossRefGoogle Scholar
  57. 57.
    Jackson PA, Byth DE, Fischer KS, Johnston RP (1994) Genotype × environment interactions in progeny from a barley cross: II. Variation in grain yield, yield components and dry matter production among lines with similar times to anthesis. Field Crop Res 37:11–23CrossRefGoogle Scholar
  58. 58.
    Van Oosterom EJ, Kleijn DM, Ceccarelli S, Nachit MM (1993) Genotype-by-environment interactions of Barley in the Mediterranean region. Crop Sci 33:669–674CrossRefGoogle Scholar
  59. 59.
    Appendino ML, Slafer GA (2003) Earliness per se and its dependence upon temperature in diploid wheat lines differing in the major gene Eps-A m 1 alleles. J Agric Sci 141:149–154CrossRefGoogle Scholar
  60. 60.
    Bullrich L, Appendino ML, Tranquilli G, Lewis S, Dubcovsky J (2002) Mapping of a thermo-sensitive earliness per se gene on Triticum monococcum chromosome 1Am. Theor Appl Genet 105:585–593CrossRefGoogle Scholar
  61. 61.
    Lewis S, Faricelli ME, Appendino ML, Valárik M, Dubcovsky J (2008) The chromosome region including the earliness per se locus Eps-A m 1 affects the duration of early developmental phases and spikelet number in diploid wheat. J Exp Bot 59:3595–3607CrossRefGoogle Scholar
  62. 62.
    Slafer GA (1996) Differences in phasic development rate amongst wheat cultivars independent of responses to photoperiod and vernalization. A viewpoint of the intrinsic earliness hypothesis. J Agric Sci 126:403–419CrossRefGoogle Scholar
  63. 63.
    Slafer GA, Rawson HM (1995) Base and optimum temperatures vary with genotype and stage of development in wheat. Plant Cell Environ 18:671–679CrossRefGoogle Scholar
  64. 64.
    Cockram J, Jones H, Leigh FJ, O’Sullivan D, Powell W, Laurie DA, Greenland A (2007) Control of flowering time in temperate cereals, genes, domestication, and sustainable productivity. J Exp Bot 58:1231–1244CrossRefGoogle Scholar
  65. 65.
    Eagles HA, Cane K, Vallance N (2009) The flow of alleles of important photoperiod basically and vernalisation genes through Australian wheat. Crop Pasture Sci 60:646–657CrossRefGoogle Scholar
  66. 66.
    Baum M, Grando S, Backes G, Jahoor A, Sabbagh A, Ceccarelli S (2003) QTLs for agronomic traits in the Mediterranean environment identified in recombinant inbred lines of the cross ‘Arta’ × H. spontaneum 41-1. Theor Appl Genet 107:1215–1225CrossRefGoogle Scholar
  67. 67.
    Bezant J, Laurie D, Pratchett N, Chojecki J, Kearsey M (1996) Marker regression mapping of QTL controlling flowering time and plant height in a spring barley (Hordeum vulgare L.) cross. Heredity 77:64–73CrossRefGoogle Scholar
  68. 68.
    Li JZ, Huang XQ, Heinrichs F, Ganal MW, Röder MS (2006) Analysis of QTLs for yield components, agronomic traits and disease resistance in an advanced backcross population of spring barley. Genome 49:454–466CrossRefGoogle Scholar
  69. 69.
    Tinker NA, Mather DE, Blake TK, Briggs KG, Choo TM, Dahleen L, Dofing SM, Falk DE, Ferguson T, Franckowiak JD, Graf R, Hayes PM, Hoffman D, Irvine RB, Kleinhofs A, Legge W, Rossnagel BG, Saghai Maroof MA, Scoles GJ, Shugar LP, Steffenson B, Ullrich S, Kasha KJ (1996) Regions of the genome that affect agronomic performance in two-row barley. Crop Sci 36:1053–1062CrossRefGoogle Scholar
  70. 70.
    Cuesta-Marcos A, Casas AM, Hayes PM, Gracia MP, Lasa JM, Ciudad F, Codesal P, Molina-Cano JL, Igartua E (2009) Yield QTL affected by heading date in Mediterranean grown barley. Plant Breeding 128:46–53CrossRefGoogle Scholar
  71. 71.
    Romagosa I, Ullrich SE, Han F, Hayes PM (1996) Use of the AMMI model in QTL mapping for adaptation in barley. Theor Appl Genet 93:30–37CrossRefGoogle Scholar
  72. 72.
    Malosetti M, Voltas J, Romagosa I, Ullrich SE, van Eeuwijk FA (2004) Mixed models including environmental variables for studying QTL by environment interaction. Euphytica 137:139–145CrossRefGoogle Scholar
  73. 73.
    Beales J, Turner A, Griffiths S, Snape JW, Laurie DA (2007) A Pseudo-Response Regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor Appl Genet 115:721–733CrossRefGoogle Scholar
  74. 74.
    Wilhelm EP, Turner AS, Laurie DA (2009) Photoperiod insensitive Ppd-A1a mutations in tetraploid wheat (Triticum durum Desf.). Theor Appl Genet 118:285–294CrossRefGoogle Scholar
  75. 75.
    Laurie DA, Pratchett N, Bezant JH, Snape JW (1995) RFLP mapping of five major genes and eight quantitative trait loci controlling flowering time in a winter × spring barley (Hordeum vulgare L.) cross. Genome 38:575–585CrossRefGoogle Scholar
  76. 76.
    Jones H, Leigh FJ, Mackay I, Bower MA, Smith LMJ, Charles MP, Jones G, Jones MJ, Brown TA, Powell W (2008) Population-based resequencing reveals that the flowering time adaptation of cultivated barley originated East of the Fertile Crescent. Mol Biol Evol 25:2211–2219CrossRefGoogle Scholar
  77. 77.
    Faure S, Higgins J, Turner A, Laurie DA (2007) The flowering locus T-like gene family in barley (Hordeum vulgare). Genetics 176:599–609CrossRefGoogle Scholar
  78. 78.
    Fu D, Szűcs P, Liuling Y, Helguera M, Skinner JS, Zitzewitz J, Hayes PM, Dubcovsky J (2005) Large deletions within the first intron in Vrn-1 are associated with spring growth habit in barley and wheat. Mol Genet Genomics 273:54–65CrossRefGoogle Scholar
  79. 79.
    Trevaskis B, Bagnall DJ, Ellis MH, Peacock WJ, Dennis ES (2003) MADS box genes control vernalization-induced flowering in cereals. Proc Natl Acad Sci 22:13099–13104CrossRefGoogle Scholar
  80. 80.
    Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene Vrn1. Proc Natl Acad Sci 100:6263–6268CrossRefGoogle Scholar
  81. 81.
    Distelfeld A, Tranquilli G, Chengxia L, Yan L, Dubcovsky J (2009) Genetic and molecular characterization of the Vrn2 loci in tetraploid wheat. Plant Physiol 149:245–257CrossRefGoogle Scholar
  82. 82.
    Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, San Miguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004) The wheat Vrn2 gene, a flowering repressor down-regulated by vernalization. Science 303:1640–1644CrossRefGoogle Scholar
  83. 83.
    Casao MC, Igartua E, Karsai I, Bhat PR, Cuadrado N, Gracia MP, Lasa JM, Casas AM (2011) Introgression of an intermediate VRNH1 allele in barley (Hordeum vulgare L.) leads to reduced vernalization requirement without affecting freezing tolerance. Mol Breed. doi:10.1007/s11032-010-9497Google Scholar
  84. 84.
    Bonnin I, Rousset M, Madur D, Sourdille P, Dupuits C, Brunel D, Goldringer I (2008) FT genome A and D polymorphisms are associated with the variation of earliness components in hexaploid wheat. Theor Appl Genet 116:383–394CrossRefGoogle Scholar
  85. 85.
    Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J (2006) The wheat and barley vernalization gene Vrn3 is an orthologue of FT. Proc Natl Acad Sci 103:19581–19586CrossRefGoogle Scholar
  86. 86.
    Börner A, Buck-Sorlin GH, Hayes PM, Malyshev S, Korzun V (2002) Molecular mapping of major genes and quantitative trait loci determining flowering time in response to photoperiod in barley. Plant Breed 121:129–132CrossRefGoogle Scholar
  87. 87.
    Franckowiak JD (1997) Revised linkage maps for morphological markers in barley, Hordeum vulgare. Barley Genet Newsl 26:9–21Google Scholar
  88. 88.
    Lundqvist U, Franckowiak JD, Konishi T (1997) New and revised descriptions of barley genes. Barley Genet Newsl 26:22–516Google Scholar
  89. 89.
    Stracke S, Börner A (1998) Molecular mapping of the photoperiod response gene ea7 in barley. Theor Appl Genet 97:797–800CrossRefGoogle Scholar
  90. 90.
    Chen A, Baumann U, Fincher GB, Collins NC (2009) Flt-2L, a locus in barley controlling flowering time, spike density, and plant height. Funct Integr Genomics 9:243–254CrossRefGoogle Scholar
  91. 91.
    Scarth R, Law CN (1983) The location of the photoperiodic gene, Ppd2, and an additional factor for ear-emergence time on chromosome 2B of wheat. Heredity 51:607–619CrossRefGoogle Scholar
  92. 92.
    Shindo C, Tsujimoto H, Sasakuma T (2003) Segregation analysis of heading traits in hexaploid wheat utilizing recombinant inbred lines. Heredity 90:56–63CrossRefGoogle Scholar
  93. 93.
    Yoshida T, Nishida H, Zhu J, Nitcher R, Distelfed A, Akashi Y, Kato K, Dubcovsky J (2010) Vrn-D4 is a vernalization gene located on the centromeric region of chromosome 5D in hexaploid wheat. Theor Appl Genet 120:543–552CrossRefGoogle Scholar
  94. 94.
    Kato K, Miura H, Sawada S (2002) Characterization of QEet.ocs-5A.1, a quantitative trait locus for ear emergence time on wheat chromosome 5AL. Plant Breed 121:389–393CrossRefGoogle Scholar
  95. 95.
    Law CN, Worland AJ (1997) Genetic analysis of some flowering time and adaptative traits in wheat. New Phytol 137:19–28CrossRefGoogle Scholar
  96. 96.
    Griffiths S, Simmonds J, Leverington M, Wang Y, Fish L, Sayers L, Alibert L, Orford S, Wingen L, Herry L, Faure S, Laurie D, Bilham L, Snape J (2009) Meta-QTL analysis of the genetic control of ear emergence in elite European winter wheat germplasm. Theor Appl Genet 119:383–395CrossRefGoogle Scholar
  97. 97.
    Kuchel H, Hollamby G, Langridge P, Williams K, Jefferies SP (2006) Identification of genetic loci associated with ear-emergence in bread wheat. Theor Appl Genet 113:1103–1112CrossRefGoogle Scholar
  98. 98.
    Sourdille P, Snape JW, Charmet G, Nakata N, Bernard S, Bernard M (2000) Detection of QTLs for heading time and photoperiod response in wheat using a doubled-haploid population. Genome 43:487–494CrossRefGoogle Scholar
  99. 99.
    Boer M, Wright D, Feng L, Podlich D, Luo L, Cooper M, van Eeuwijk FA (2007) A mixed model QTL analysis for multiple environment trial data using environmental covariables for QTLxE, with an example in maize. Genetics 177:1801–1813CrossRefGoogle Scholar
  100. 100.
    Payne RW, Murray DA, Harding SA, Baird DB, Soutar DM (2010) GenStat for windows (13th edition) introduction. VSN International, Hemel HempsteadGoogle Scholar
  101. 101.
    Limin A, Corey A, Hayes PM, Fowler DB (2007) Low-temperature acclimation of barley cultivars used as parents in mapping populations: response to photoperiod, vernalization and phenological development. Planta 226:139–146CrossRefGoogle Scholar
  102. 102.
    Slafer GA, Abeledo LG, Miralles DJ, González FG, Whitechurch EM (2001) Photoperiod sensitivity during stem elongation as an avenue to raise potential yield in wheat. Euphytica 119:191–197CrossRefGoogle Scholar
  103. 103.
    Slafer GA, Araus JL, Royo C, García del Moral LF (2005) Promising eco-physiological traits for genetic improvement of cereal yields in Mediterranean environments. Ann Appl Biol 146:61–70CrossRefGoogle Scholar
  104. 104.
    Fischer RA (2007) Understanding the physiological basis of yield potential in wheat. J Agric Sci 145:99–113CrossRefGoogle Scholar
  105. 105.
    Miralles DJ, Slafer GA (2007) Sink limitations to yield in wheat, how could it be reduced? J Agric Sci 145:139–149CrossRefGoogle Scholar
  106. 106.
    Halloran GM, Pennell AL (1982) Duration and rate of development phases in wheat in two environments. Ann Bot 49:115–121Google Scholar
  107. 107.
    Whitechurch EM, Slafer GA, Miralles DJ (2007) Variability in the duration of stem elongation in wheat and barley genotypes. J Agron Crop Sci 193:138–145CrossRefGoogle Scholar
  108. 108.
    Borràs-Gelonch G, Rebetzke G, Richards R, Romagosa I (2011b) Genetic control of duration of pre-anthesis phases in wheat (Triticum aestivum L.) and relationships to leaf appearance, tillering and dry matter accumulation. Journal of Experimental Botany, doi: 10.1093/jxb/err230Google Scholar
  109. 109.
    Appleyard M, Kirby EJM, Fellowes G (1982) Relationships between the duration of phases in the pre-anthesis life cycle of spring barley. Aust J Agr Res 33:917–925CrossRefGoogle Scholar
  110. 110.
    Borràs G, Romagosa I, van Eeuwijk F, Slafer GA (2009) Genetic variability in the duration of pre-heading phases and relationships with leaf appearance and tillering dynamics in a barley population. Field Crop Res 113:95–104CrossRefGoogle Scholar
  111. 111.
    Borràs-Gelonch G, Slafer GA, Casas A, van Eeuwijk F, Romagosa I (2010) Genetic control of pre-heading phases and other traits related to development in a double haploid barley population (Hordeum vulgare L.). Field Crop Res 119:36–47CrossRefGoogle Scholar
  112. 112.
    Kernich GC, Halloran GM, Flood RG (1995) Variation in development patterns of wild barley (Hordeum spontaneum L) and cultivated barley (H vulgare L). Euphytica 82:105–115CrossRefGoogle Scholar
  113. 113.
    Kernich GC, Halloran GM, Flood RG (1997) Variation in duration of pre-anthesis phases of development in barley (Hordeum vulgare). Aust J Agr Res 48:59–66CrossRefGoogle Scholar
  114. 114.
    Kitchen BM, Rasmusson DC (1983) Duration and inheritance of leaf initiation, spike initiation and spike growth in barley. Crop Sci 23:939–943CrossRefGoogle Scholar
  115. 115.
    González FG, Slafer GA, Miralles DJ (2002) Vernalization and photoperiod responses in wheat pre-flowering reproductive phases. Field Crop Res 74:183–195CrossRefGoogle Scholar
  116. 116.
    Miralles DJ, Richards RA (2000) Responses of leaf and tiller emergence and primordium initiation in wheat and barley to interchanged photoperiod. Ann Bot 85:655–663CrossRefGoogle Scholar
  117. 117.
    González FG, Slafer GA, Miralles DJ (2005) Pre-anthesis development and number of fertile florets in wheat as affected by photoperiod sensitivity genes Ppd-D1 and Ppd-B1. Euphytica 146:253–269CrossRefGoogle Scholar
  118. 118.
    Zhou Y, Li W, Wu W, Chen Q, Mao D, Worland AJ (2001) Genetic dissection of heading time and its components in rice. Theor Appl Genet 102:1236–1242CrossRefGoogle Scholar
  119. 119.
    Borràs-Gelonch G, Denti M, Thomas WTB, Romagosa I (2011a) Genetic control of pre-heading phases in the Steptoe x Morex barley population under different conditions of photoperiod and temperature. Euphytica doi: 10.1007/s10681-011-0526-7Google Scholar
  120. 120.
    Denis JB (1988) Two-way analysis using covariates. Statistics 19:123–132CrossRefGoogle Scholar
  121. 121.
    van Eeuwijk FA, Denis JB, Kang MS (1996) Incorporating additional information on genotypes and environments in models for two-way genotype by environment tables. In: Kang MS, Gauch HG (eds) Genotype-by-environment interaction. CRC Press, Boca Raton, pp 15–50CrossRefGoogle Scholar
  122. 122.
    Yates F, Cochran WG (1938) The analysis of groups of experiments. J Agric Sci 28:556–580CrossRefGoogle Scholar
  123. 123.
    Finlay KW, Wilkinson GN (1963) The analysis of adaptation in a plant breeding programme. Aust J Agr Res 14:742–754CrossRefGoogle Scholar
  124. 124.
    van Eeuwijk FA (1995) Linear and bilinear models for the analysis of multi-environment trials: I. An inventory of models. Euphytica 84:1–7CrossRefGoogle Scholar
  125. 125.
    Denis JB, Gower JC (1996) Asymptotic confidence regions for biadditive models: interpreting genotype-environment interactions. Appl Stat 45:479–492CrossRefGoogle Scholar
  126. 126.
    Gabriel KR (1998) Generalised bilinear regression. Biometrika 85:689–700CrossRefGoogle Scholar
  127. 127.
    van Eeuwijk FA (1995) Multiplicative interaction in generalized linear models. Biometrics 51:1017–1032CrossRefGoogle Scholar
  128. 128.
    Gabriel KR (1978) Least squares approximation of matrices by additive and multiplicative models. J Roy Stat Soc Ser B 40:186–196Google Scholar
  129. 129.
    Gauch HG (1988) Model selection and validation for yield trials with interaction. Biometrics 44:705–715CrossRefGoogle Scholar
  130. 130.
    Gollob HF (1968) A statistical model which combines features of factor analysis and analysis of variance techniques. Psychometrika 33:73–115CrossRefGoogle Scholar
  131. 131.
    Mandel J (1969) The partitioning of interaction in analysis of variance. J Res NBS 73B:309–328Google Scholar
  132. 132.
    Yan W, Kang MS (2003) GGE biplot analysis: a graphical tool for breeders, geneticists, and agronomists. CRC Press, Boca RatonGoogle Scholar
  133. 133.
    Yan W, Hunt LA, Sheng Q, Szlavnics Z (2000) Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Sci 40:597–605CrossRefGoogle Scholar
  134. 134.
    Cornelius PL (1993) Statistical tests and retention of terms in the additive main effects and multiplicative interaction model for cultivar trials. Crop Sci 33:1186–1193CrossRefGoogle Scholar
  135. 135.
    Kempton RA (1984) The use of biplots in interpreting variety by environment interactions. J Agric Sci 103:123–135CrossRefGoogle Scholar
  136. 136.
    Molina-Cano JL, García del Moral LF, Ramos JM, García del Moral MB, Romagosa I, Roca de Togores F (1990) Quantitative phenotypical expression of three mutant genes in barley and the basis for defining an ideotype for Merditerranean environments. Theor Appl Genet 80:762–768CrossRefGoogle Scholar
  137. 137.
    Romagosa I, Fox PN, del Moral G, Ramos JM, García del Moral B, Roca de Togores F, Molina-Cano JL (1993) Integration of statistical and physiological analyses of adaptation of near-isogenic barley lines. Theor Appl Genet 86:822–826CrossRefGoogle Scholar
  138. 138.
    Vargas M, Crossa J, van Eeuwijk FA, Ramírez ME, Sayre K (1999) Using AMMI, factorial regression, and partial least squares regression models for interpreting genotype × environment interaction. Crop Sci 39:955–967CrossRefGoogle Scholar
  139. 139.
    Voltas J, van Eeuwijk FA, Sombrero A, Lafarga A, Igartua E, Romagosa I (1999) Integrating statistical and ecophysiological analysis of genotype by environment interaction for grain filling of barley in Mediterranean areas I. Individual grain weight. Field Crop Res 62:63–74CrossRefGoogle Scholar
  140. 140.
    Voltas J, van Eeuwijk FA, Araus JL, Romagosa I (1999) Integrating statistical and ecophysiological analysis of genotype by environment interaction for grain filling of barley in Mediterranean areas II. Grain growth. Field Crop Res 62:75–84CrossRefGoogle Scholar
  141. 141.
    Royo C, Rodríguez A, Romagosa I (1993) Differential adaptation of complete and substituted triticale to acid soils. Plant Breed 111:113–119CrossRefGoogle Scholar
  142. 142.
    Lynch M, Walsh JB (1998) Genetics and analysis of quantitative traits. Sinauer Associates, SunderlandGoogle Scholar
  143. 143.
    van Eeuwijk FA, Crossa J, Vargas M, Ribaut JM (2001) Variants of factorial regression for analysing QTL by environment interaction. In: Gallais A, Dillmann C, Goldringer I (eds) Eucarpia, quantitative genetics and breeding methods: the way ahead, vol 96, INRA Editions Versailles Les Colloques series. INRA, Paris, pp 107–116Google Scholar
  144. 144.
    van Eeuwijk FA, Crossa J, Vargas M, Ribaut JM (2002) Analysing QTL by environment interaction by factorial regression, with an application to the CIMMYT drought and low nitrogen stress programme in maize. In: Kang MS (ed) Quantitative genetics, genomics and plant breeding. CAB International, Wallingford, pp 245–256Google Scholar
  145. 145.
    Piepho HP, Pillen K (2004) Mixed modeling for QTL × environment interaction analysis. Euphytica 137:147–153CrossRefGoogle Scholar
  146. 146.
    IRRI (2008) CropStat for windows, version 5. Biometrics and Bioinformatics Unit, International Rice Research Institute, Los Baños, Philippines. http://www.irri.org/science/software/irristat.asp. Accessed 27 Feb 2008
  147. 147.
    Gauch HG (2007) MATMODEL version 3.0: Open source software for AMMI and related analyses. Crop and Soil Sciences, Cornell University, Ithaca. http://www.css.cornell.edu/staff/gauch. Accessed 27 Feb 2008
  148. 148.
    Balzarini MG, Bruno C, Peña A, Teich I, Di Rienzo JA (2010) Estadística en Biotecnología. Aplicaciones en Info-Gen. Grupo InfoStat, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, ArgentinaGoogle Scholar
  149. 149.
    Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2008) InfoStat, versión 2008. Grupo InfoStat, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, ArgentinaGoogle Scholar
  150. 150.
    Kang MS (2003) Handbook of formulas and software for plant geneticists and breeders. Haworth Press, BinghamtonGoogle Scholar
  151. 151.
    Friedman J, Hastie T, Tibshirani R (2008) Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9:432–441CrossRefGoogle Scholar
  152. 152.
    Bernardo R, Yu J (2007) Prospects for genomewide selection for quantitative traits in maize. Crop Sci 47:1082–1090CrossRefGoogle Scholar
  153. 153.
    Heffner EL, Sorrells ME, Jannink JL (2009) Genomic selection for crop improvement. Crop Sci 49:1–12CrossRefGoogle Scholar
  154. 154.
    Jannink JL, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Brief Funct Genomics 9:166–177CrossRefGoogle Scholar
  155. 155.
    Bertin N, Martre P, Génard M, Quilot B, Salon C (2010) Under what circumstances can process-based simulation models link genotype to phenotype for complex traits? Case-study of fruit and grain quality traits. J Exp Bot 61:955–967CrossRefGoogle Scholar
  156. 156.
    Chenu K, Chapman SC, Tardieu F, McLean G, Welcker C, Hammer GL (2009) Simulating the yield impacts of organ-level quantitative trait loci associated with drought response in maize – a ‘gene-to-phenotype’ modeling approach. Genetics 183:1507–1523CrossRefGoogle Scholar
  157. 157.
    Hammer G, Cooper M, Tardieu F, Welch S, Walsh B, van Eeuwijk FA, Chapman S, Podlich D (2006) Models for navigating biological complexity in breeding improved crop plants. Trends Plant Sci 11:587–593CrossRefGoogle Scholar

Books and Reviews

  1. Ceccarelli S, Guimaraës EP, Weltzien E (eds) (2009) Participatory plant breeding. FAO, RomeGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Ignacio Romagosa
    • 1
  • Gisela Borràs-Gelonch
    • 1
  • Gustavo Slafer
    • 1
  • Fred van Eeuwijk
    • 2
  1. 1.Department of Crop and Forest SciencesUniversity of LleidaLleidaSpain
  2. 2.BiometrisWageningen University and Research CentreWageningenThe Netherlands