Encyclopedia of Sustainability Science and Technology

2012 Edition
| Editors: Robert A. Meyers

GM Crop Risk Debate, Science and Socioeconomics

Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-0851-3_130

Introduction

The General Strategic Situation of the Debate About Green Biotechnology Today

The aim of this text is to set the framework for a better communication about science and regulation, and production of GM crops. GM stands for Genetic Modification, basically an unfortunate denomination, because actually all crops are genetically modified , but it is a worldwide accepted term for genetically engineered crops, including transgenes, auto- and allotransgenes, cis- and infra-genes, and synthetic genes, for details see Beardmore [ 1]. By including gene stacking of various kinds, the situation is getting even more complex [ 2]. With the introduction of in Vivo Mutation (with Zink-Finger Technology and the latest transformation method transcription activator-like family of type III effectors [TALEs] ) the situation will change even more, the age of a high precision and targeted change of genomes has only begun and will develop rapidly, see section Innovation in Agriculture on All Levels...
This is a preview of subscription content, log in to check access

Bibliography

  1. 1.
    Beardmore JA (1997) Transgenics: autotransgenics and allotransgenics. Trans Res 6(1):107–108CrossRefGoogle Scholar
  2. 2.
    Taverniers I et al (2008) Gene stacking in transgenic plants: towards compliance between definitions, terminology, and detection within the EU regulatory framework. Environ Biosaf Res 7(4). doi:10.1051/ebr:2008018Google Scholar
  3. 3.
    Potrykus I et al (2010) Transgenic plants for food security in the context of development, statement of the pontifical academy of sciences. New Biotechnol 27(5):443–717Google Scholar
  4. 4.
    Rauschen S (2009) German GM research – a personal account. Nat Biotech 27(4):318–319CrossRefGoogle Scholar
  5. 5.
    Showalter E (1997) Hystories. Columbia University Press, New York, 244 ppGoogle Scholar
  6. 6.
    Linden A, Fenn J (2003) Understanding Gartner’s hype cycles. In: Strategic Analysis Report. Gartner Research, p 12Google Scholar
  7. 7.
    Chassy BM (2007) The history and future of GMOs in food and agriculture. Cereal Foods World 52(4):169–172Google Scholar
  8. 8.
    Martineau B (2002) First fruit: the creation of the Flavr savr tomato and the birth of biotech food. McGraw-Hill, New York, 224 ppGoogle Scholar
  9. 9.
    Carrière Y, Crowder DW, Tabashnik BE (2010) Evolutionary ecology of insect adaptation to Bt crops. Blackwell, Oxford, pp 561–573Google Scholar
  10. 10.
    Ellstrand NC et al (2010) Crops gone wild: evolution of weeds and invasives from domesticated ancestors. Blackwell, Oxford, pp 494–504Google Scholar
  11. 11.
    Huang F, Andow DA, Buschman LL (2011) Success of the high-dose/refuge resistance management strategy after 15 years of Bt crop use in North America. Entomol Experiment Et Appl 140(1):1–16CrossRefGoogle Scholar
  12. 12.
    Gatehouse AMR, Ferry N, Raemaekers RJM (2002) The case of the monarch butterfly: a verdict is returned. Trends Genet 18(5):249–251CrossRefGoogle Scholar
  13. 13.
    Lovei GL, Andow DA, Arpaia S (2009) Transgenic insecticidal crops and natural enemies: a detailed review of laboratory studies. Environ Entomol 38:293–306CrossRefGoogle Scholar
  14. 14.
    Shelton A et al (2009) Setting the record straight: a rebuttal to an erroneous analysis on transgenic insecticidal crops and natural enemies. Trans Res 18(3):317–322CrossRefGoogle Scholar
  15. 15.
    Moore GA (2002) Crossing the chasm. Harper Paperbacks, New York, Revised edition 20 Aug 2002, 256 ppGoogle Scholar
  16. 16.
    Thro AM (2004) Europe on transgenic crops: how public plant breeding and eco-transgenics can help in the transatlantic debate. Commentary. AgBioForum 7:142–148Google Scholar
  17. 17.
    Adams J (1995) Risk. Taylor & Francis, Bristol, 228 ppGoogle Scholar
  18. 18.
    Royal-Society (2009) Reaping the benefits: science and the sustainable intensification of global agriculture. In: RS Policy document 11/09. Royal Society, London, p 89Google Scholar
  19. 19.
    Arber W (2010) Genetic engineering compared to natural genetic variations. New Biotechnol 27(5):517–521CrossRefGoogle Scholar
  20. 20.
    Britt AB, May GD (2003) Re-engineering plant gene targeting. Trends Plant Sci 8(2):90–95CrossRefGoogle Scholar
  21. 21.
    Henderson IR, Jacobsen SE (2007) Epigenetic inheritance in plants. Nature 447(7143):418–424CrossRefGoogle Scholar
  22. 22.
    Johnson L (2007) The genome strikes back: the evolutionary importance of defence against mobile elements. Evolut Biol 34(3):121–129CrossRefGoogle Scholar
  23. 23.
    Moch K, Brauner R, Ott B (2005) Epigenetics, transgenic plants & risk assessment. In: Epigenetics, transgenic plants & risk assessment. 1st Dec 2005, Literaturhaus, Frankfurt am Main, Germany © 2006, Öko-Institut e.V., Box 50 02 40, D-791028 Freiburg, Die Deutsche Bibliothek – CIP Cataloguing-in-Publication-Data, A catalogue record for this publication is available from Die Deutsche BibliothekGoogle Scholar
  24. 24.
    Smilde AK et al (2010) Dynamic metabolomic data analysis: a tutorial review. Metabolomics 6(1):3–17CrossRefGoogle Scholar
  25. 25.
    Domon B, Aebersold R (2010) Options and considerations when selecting a quantitative proteomics strategy. Nat Biotechnol 28(7):710–721CrossRefGoogle Scholar
  26. 26.
    Addona TA et al (2009) Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma. Nat Biotechnol 27(7):633–U85CrossRefGoogle Scholar
  27. 27.
    Wittenberg AHJ et al (2005) Validation of the high-throughput marker technology DArT using the model plant Arabidopsis thaliana. Molec Genet Genomics 274(1):30–39CrossRefGoogle Scholar
  28. 28.
    Colbert T et al (2001) High-throughput screening for induced point mutations. Plant Physiol 126(2):480–484CrossRefGoogle Scholar
  29. 29.
    Giddings VL (2006) “Cisgenic” as a product designation. Nat Biotech 24(11):1329–1329CrossRefGoogle Scholar
  30. 30.
    Schouten HJ, Jacobsen E (2007) Are mutations in genetically modified plants dangerous?. J Biomed Biotechnol: 8261, p 2Google Scholar
  31. 31.
    Schouten HJ, Krens FA, Jacobsen E (2006) Do cisgenic plants warrant less stringent oversight? Nat Biotechnol 24(7):753–753CrossRefGoogle Scholar
  32. 32.
    Schouten HJ et al (2006) Cisgenic plants are similar to traditionally bred plants – International regulations for genetically modified organisms should be altered to exempt cisgenesis. Embo Reports 7(8):750–753CrossRefGoogle Scholar
  33. 33.
    Jacobsen E, Nataraja KN (2008) Cisgenics – Facilitating the second green revolution in India by improved traditional plant breeding. Curr Sci 94(11):1365–1366Google Scholar
  34. 34.
    Jacobsen E, Schouten HJ (2007) Cisgenesis strongly improves introgression breeding and induced translocation breeding of plants. Trends Biotechnol 25(5):219–223CrossRefGoogle Scholar
  35. 35.
    Conner AJ et al (2007) Intragenic vectors for gene transfer without foreign DNA. Euphytica 154(3):341–353CrossRefGoogle Scholar
  36. 36.
    Rigola D et al (2009) High-throughput detection of induced mutations and natural variation using keypoint (TM) technology. PLoS One 4(3):e4761Google Scholar
  37. 37.
    Parry MAJ et al (2009) Mutation discovery for crop improvement. J Exper Botany 60(10):2817–2825CrossRefGoogle Scholar
  38. 38.
    Davies H, Bryan G, Taylor M (2008) Advances in functional genomics and genetic modification of potato. Potato Res 51(3):283–299CrossRefGoogle Scholar
  39. 39.
    Townsend JA et al (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459(7245):442–445, advanced online publicationCrossRefGoogle Scholar
  40. 40.
    Shukla VK et al (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459(7245):437–441, advanced online publicationCrossRefGoogle Scholar
  41. 41.
    Cai C et al (2009) Targeted transgene integration in plant cells using designed zinc finger nucleases. Plant Molec Biol 69(6):699–709CrossRefGoogle Scholar
  42. 42.
    Osakabe K, Osakabe Y, Toki S (2010) Site-directed mutagenesis in Arabidopsis using custom-designed zinc finger nucleases. Proc Nat Acad Sci 107(26):12034–12039CrossRefGoogle Scholar
  43. 43.
    Gabriel R et al (2011) An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat Biotech 29(9):816–823CrossRefGoogle Scholar
  44. 44.
    Ammann K (2008) Feature: integrated farming: why organic farmers should use transgenic crops. New Biotechnol 25(2):101–107CrossRefGoogle Scholar
  45. 45.
    Mahfouz MM et al (2011) De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc Nat Acad Sci 108(6):2623–2628CrossRefGoogle Scholar
  46. 46.
  47. 47.
    Epinat JC et al (2003) A novel engineered meganuclease induces homologous recombination in yeast and mammalian cells. Nucl Acid Res 31(11):2952–2962CrossRefGoogle Scholar
  48. 48.
    Paques F, Duchateau P (2007) Meganucleases and DNA double-strand break-induced recombination: perspectives for gene therapy. Curr Gene Ther 7(1):49–66CrossRefGoogle Scholar
  49. 49.
    Silva G et al (2011) Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Curr Gene Ther 11(1):11–27CrossRefGoogle Scholar
  50. 50.
    Benner SA (2004) Understanding nucleic acids using synthetic chemistry. Acc Chem Res 37(10):784–797CrossRefGoogle Scholar
  51. 51.
    Tian JD, Ma KS, Saaem I (2009) Advancing high-throughput gene synthesis technology. Molec Biosyst 5(7):714–722CrossRefGoogle Scholar
  52. 52.
    Benner SA et al (1998) Redesigning nucleic acids. Pure Appl Chem 70(2):263–266CrossRefGoogle Scholar
  53. 53.
    Benner SA, Sismour AM (2005) Synthetic biology. Nat Rev Genet 6(7):533–543CrossRefGoogle Scholar
  54. 54.
    Rusch DB et al (2007) The sorcerer ii global ocean sampling expedition: Northwest Atlantic through Eastern tropical pacific. Plos Biol 5(3):398–431CrossRefGoogle Scholar
  55. 55.
    Gibson DG et al (2008) Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319(5867):1215–1220CrossRefGoogle Scholar
  56. 56.
    Gibson DG et al (2008) One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome. Proc Nat Acad Sci USA 105(51):20404–20409CrossRefGoogle Scholar
  57. 57.
    Gibson DG et al (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329(5987):52–56. doi:10.1126/science.1190719CrossRefGoogle Scholar
  58. 58.
    Bugl H et al (2007) DNA synthesis and biological security. Nat Biotechnol 25:627–629CrossRefGoogle Scholar
  59. 59.
    Maurer SM, Lucas KV, Terrell S (2006) From understanding to action: community-based options for improving safety and security in synthetic biology, Draft 1.1, 15 April 2006. University of California, Berkeley, Califorina, p 93Google Scholar
  60. 60.
    Serrano L (2007) Synthetic biology: promises and challenges. Mol Syst Biol 3:158CrossRefGoogle Scholar
  61. 61.
    Edmond G, Mercer D (2009) Norms and irony in the biosciences: ameliorating critique in synthetic biology. Law Literat 21(3):445–470CrossRefGoogle Scholar
  62. 62.
    Miller HI (2010) Understanding the frankenstein myth. Project Syndicate, a World of Idas. http://www.ask-force.org/web/Genomics/Miller-Understanding-Frankenstein-Tradition-2010.pdf
  63. 63.
    Tabashnik BE et al (2011) Efficacy of genetically modified Bt toxins against insects with different genetic mechanisms of resistance. Nat Biotech, advance online publicationGoogle Scholar
  64. 64.
    Soberon M et al (2007) Engineering modified Bt toxins to counter insect resistance. Science 318(5856):1640–1642CrossRefGoogle Scholar
  65. 65.
    Keller D (2009) Start talking to each other!’ – dialogue as key to biotechnology’s future in Europe. New Biotechnol 25:185, Corrected proofCrossRefGoogle Scholar
  66. 66.
    Ramon D, Diamante A, Calvo MD (2008) Food biotechnology and education. Electron J Biotechnol 11(5)Google Scholar
  67. 67.
    Harms U (2002) Biotechnology education in schools. Electron J Biotechnol 5(3):205–211CrossRefGoogle Scholar
  68. 68.
    Gensuisse (2011) Themenfocus. Gensuisse Website Forum 2011. Available from: http://www.gensuisse.ch/focus/index.html
  69. 69.
    Sengooba T et al (2009) Biosafety education relevant to genetically engineered crops for academic and non-academic stakeholders in East Africa. Electron J Biotechnol 12(1)Google Scholar
  70. 70.
    McHughen A (2007) Public perceptions of biotechnology. Biotechnol J 2(9):1105–1111CrossRefGoogle Scholar
  71. 71.
    James C (2009) Global status of commercialized biotech/GM crops. Brief 39, Executive Summary. ISAAA, p 20Google Scholar
  72. 72.
    Sturgis P, Allum N (2004) Science in society: re-evaluating the deficit model of public attitudes. Public Understand Sci 13(1):55–74CrossRefGoogle Scholar
  73. 73.
    Sturgis P, Cooper H, Fife-Schaw C (2005) Attitudes to biotechnology: estimating the opinions of a better-informed public. New Genet Soc 24(1):31–56CrossRefGoogle Scholar
  74. 74.
    Sturgis P, Roberts C, Allum N (2005) A different take on the deliberative poll – Information, deliberation, and attitude constraint. Public Opin Quart 69(1):30–65CrossRefGoogle Scholar
  75. 75.
    Gaskell G et al (2000) Biotechnology and the European public. Nat Biotechnol 18(9):935–938CrossRefGoogle Scholar
  76. 76.
    Schuman H, Presser S (1980) Public-opinion and public ignorance – the fine line between attitudes and non-attitudes. Am J Sociol 85(5):1214–1225CrossRefGoogle Scholar
  77. 77.
    Aerni P, Scholderer J, Ermen D (2011) How would Swiss consumers decide if they had freedom of choice? Evidence from a field study with organic, conventional and GM corn bread. Food PolicyGoogle Scholar
  78. 78.
    Irwin A (2006) The politics of talk: coming to terms with the “new” scientific governance. Soc Stud Sci 36(2):299–320CrossRefGoogle Scholar
  79. 79.
    Churchman CW (1979) The systems approach and its ennemies and (Commented German transl.: Der Systemansatz und seine “Feinde,” with an Introduction by the editor and translator, Werner Ulrich, ed. and transl., Paul Haupt, Bern, 1981). Basic Books, New YorkGoogle Scholar
  80. 80.
    Rittel HWJ, Webber MR (2005) Dilemmas in a general theory of planning. Policy Sci 4(2):155–169CrossRefGoogle Scholar
  81. 81.
    Rittel H (1992) Planen, entwerfen, design, ausgewählte schriften zu theorie und methodik. In: Reuter Wolf D (ed) Planen, entwerfen, design. Verlag W. Kohlhammer, Berlin, p 432Google Scholar
  82. 82.
    Protzen JP, Harris DW (2010) The universe of design: Horst Rittel’s theories of design and planning, 1st edn. Routledge, London/New York, p 264, 19 June 2010Google Scholar
  83. 83.
    Magnan A (2003) Refeudalizing the public sphere: “Manipulated publicity” in the Canadian debate on GM foods. In: Annual meeting of the canadian-sociology-and-anthropology-association (CSAA). University of Alberta, Halifax, CanadaGoogle Scholar
  84. 84.
    Vaughan E (1995) The significance of socioeconomic and ethnic diversity for the risk communication process. Risk Anal 15(2):169–180CrossRefGoogle Scholar
  85. 85.
    Osseweijer P (2006) A new model for science communication that takes ethical considerations into account – The three-E model: entertainment, emotion and education. Sci Eng Ethics 12(4):591–593CrossRefGoogle Scholar
  86. 86.
    Osseweijer P (2006) Imagine projects with a strong emotional appeal. Nature 444(7118):422–422CrossRefGoogle Scholar
  87. 87.
    Osseweijer P (2006) A short history of talking biotech, fifteen years of iterative action research in institutionalising scientists’ engagement in public communication. Vrije Universiteit, AmsterdamGoogle Scholar
  88. 88.
    Osseweijer P, Ammann K, Kinderlerer J (2010) Societal issues in industrial biotechnology. In: Soethaert W, Vandamme EJ (eds) Industrial biotechnology, sustainable growth and economic success, handbook. Wiley, VCH Verlag, Weinheim, pp 457–481, Chapter 14, 522 ppCrossRefGoogle Scholar
  89. 89.
    Koutsogiannis D, Mitsikopoulou B (2004) The Internet as a glocal discourse environment – A commentary on “second language socialization in a bilingual chat room” by Wan Shun Eva Lam and “second language cyberhetoric: A study of Chinese L2 writers in an online usenet group” by Joel Bloch. Lang Learn Technol 8(3):83–89Google Scholar
  90. 90.
    Kostoff RN et al (2006) The structure and infrastructure of the global nanotechnology literature. J Nanoparticle Res 8(3–4):301–321CrossRefGoogle Scholar
  91. 91.
    Kanter RM (2000) Are you ready to lead the e-cultural revolution? Inc 22(2):43–44Google Scholar
  92. 92.
    Bruns A (2008) Blogs. Wikipedia. Second life and beyond (digital formations). Peter Lang, BernGoogle Scholar
  93. 93.
    Reifer D (2002) Ten deadly risks in internet and intranet software development. IEEE Software 19(2):12–14CrossRefGoogle Scholar
  94. 94.
    Kalman ME et al (2002) Motivations to resolve communication dilemmas in database-mediated collaboration. Commun Res 29(2):125–154CrossRefGoogle Scholar
  95. 95.
    Borland N, Wallace D (1999) Environmentally conscious product design: a collaborative internet-based modeling approach. J Indust Ecol 3(2–3):33–46CrossRefGoogle Scholar
  96. 96.
    Dall’Olio GM et al (2011) Ten simple rules for getting help from online scientific communities. PLoS Comput Biol 7(9): e1002202CrossRefGoogle Scholar
  97. 97.
    Degrassi G, Alexandrova N, Ripandelli D (2003) Databases on biotechnology and biosafety of GMOs. Environ Biosaf Res 2(3):145–160CrossRefGoogle Scholar
  98. 98.
    Burns CG (2011) Biosafety resources on the Internet. J Int Wildlife Law & Policy http://www.jiwlp.com/ 20110801. Available from: http://www.jiwlp.com/contents/biosafety_resources_net.html
  99. 99.
    Ammann K (2011) List of websites related to GM crops and biotechnology. DOI: http://www.ask-force.org/web/Sustainability/Websites-List-Publ.def.pdf
  100. 100.
    Leydesdorff L (2002) Indicators of structural change in the dynamics of science: entropy statistics of the SCI journal citation reports. Scientometrics 53(1):131–159CrossRefGoogle Scholar
  101. 101.
    Leydesdorff L (2008) Caveats for the use of citation indicators in research and journal evaluations. J Am Soc Inform Sci Technol 59(2):278–287CrossRefGoogle Scholar
  102. 102.
    Leydesdorff L (2009) How are new citation-based journal indicators adding to the bibliometric toolbox? J Am Soc Inform Sci Technol 60(7):1327–1336CrossRefGoogle Scholar
  103. 103.
    Leydesdorff L, Wagner C (2009) Macro-level indicators of the relations between research funding and research output. J Informet 3(4):353–362CrossRefGoogle Scholar
  104. 104.
    Leydesdorff L, Hellsten I (2006) Measuring the meaning of words in contexts: An automated analysis of controversies about “Monarch butterflies”, “Frankenfoods”, and “stem cells”. Scientometrics 67(2):231–258CrossRefGoogle Scholar
  105. 105.
    Aizen J et al (2004) Traffic-based feedback on the web. Proc Nat Acad Sci USA 101(Suppl 1):5254–5260CrossRefGoogle Scholar
  106. 106.
    Cavaller V (2009) Scientometrics and patent bibliometrics in RUL analysis: a new approach to valuation of intangible assets. Vine 39:80–91CrossRefGoogle Scholar
  107. 107.
    Cavaller V, Aubertin C (2008) Elements of scientometrics and patent bibliometric-analysis for the estimated remaining useful life (RUL) in the valuation of intangible assets. In: Proceedings of the 5th international conference on intellectual capital and knowledge management and organisational learning, New York, pp 87–95Google Scholar
  108. 108.
    Laporte RE et al (2002) Papyrus to powerpoint (P 2 P): metamorphosis of scientific communication. Brit Med J 325(7378):1478–1481CrossRefGoogle Scholar
  109. 109.
    Sa ER et al (2003) Open source model for global collaboration in higher education. Int J Med Inform 71(2–3):165–165CrossRefGoogle Scholar
  110. 110.
    Linkov F et al (2003) Globallsation of prevention education: a golden lecture. Lancet 362(9395):1586–1587CrossRefGoogle Scholar
  111. 111.
    Linkov F, The I (2006) Intemet-based supercourse system. J Public Health Policy 27(4):442–443Google Scholar
  112. 112.
    Laporte RE et al (2002) Infopoints – Whisking research into the classroom. Brit Med J 324(7329):99–99CrossRefGoogle Scholar
  113. 113.
    Laporte RE et al (2006) A scientific supercourse. Science 312(5773):526–526CrossRefGoogle Scholar
  114. 114.
    Sauer F, Bennett S, Cha M, Linkov F, LaPorte R (2010) Supercourse, Bibliotheca Alexandrina, and the educator as catalyst. Educause Quart 33(3)Google Scholar
  115. 115.
    Ammann K (2011) Presentations for conferences etc. with powerpoint slides. In Audio-Visual Material 20110904, Ammann K, NeuchatelGoogle Scholar
  116. 116.
    Adly N (2009) Bibliotheca alexandrina: a digital revival. Educause Rev 44(6):8–9Google Scholar
  117. 117.
    Craig W et al (2008) An overview of general features of risk assessments of genetically modified crops. Euphytica 164(3):853–880CrossRefGoogle Scholar
  118. 118.
    Leicht EA, Newman MEJ (2008) Community structure in directed networks. Phys Rev Lett 100(11):118703CrossRefGoogle Scholar
  119. 119.
    Newman MEJ (2003) The structure and function of complex networks. Siam Rev 45:167–256CrossRefGoogle Scholar
  120. 120.
    Saner M (2007) A map of the interface between science & policy, staff papers. Council of Canadian Academies, Ottawa, p 15Google Scholar
  121. 121.
    Rith C, Dubberly H (2007) Horst W. J. Rittel’s writings on design: select annotations. Des Issues 23(1):75–77Google Scholar
  122. 122.
    Rittel H, Weber M (1973) Dilemmas in a general theory of planning. Policy Sci 4:155–169CrossRefGoogle Scholar
  123. 123.
    Ammann K, Papazova Ammann B (2004) Factors influencing public policy development in agricultural biotechnology. In: Shantaram S (ed) Risk assessment of transgenic crops. Wiley, Hoboken, p 1552Google Scholar
  124. 124.
    Gasson M, Burke D (2001) Scientific perspectives on regulating the safety of genetically modified foods. Nat Rev Genet 2(3):217–222CrossRefGoogle Scholar
  125. 125.
    Phillips PWB (2003) Traceability and trade of genetically modified food. Biotechnol Sci Soc Crossroad 5:141–154Google Scholar
  126. 126.
    Sheehy RE, Kramer M, Hiatt WR (1988) Reduction of polygalacturonase activity in tomato fruit by antisense rna. Proc Nat Acad Sci USA 85(23):8805–8809CrossRefGoogle Scholar
  127. 127.
    Redenbaugh K et al (1994) Regulatory Assessment of the Flavr-savr tomato. Trends Food Sci Technol 5(4):105–110CrossRefGoogle Scholar
  128. 128.
    Kramer MG, Redenbaugh K (1994) Commercialization of a tomato with an antisense polygalacturonase gene – the Flavr Savr(Tm) tomato story. Euphytica 79(3):293–297CrossRefGoogle Scholar
  129. 129.
    Krieger EK et al (2008) The Flavr Savr tomato, an early example of RNAi technology. Hortscience 43(3):962–964Google Scholar
  130. 130.
    Graff G, Zilberman D (2004) Explaining Europe’s resistance to agricultural biotechnology. Agric Resour Econ 7(5):4Google Scholar
  131. 131.
    Lawrence F (2009) It is too late to shut the door on GM foods consumers said no to the GM farming giants a decade ago, but that didn’t stop millions of tonnes of their soya entering the food chain, in The Guardian. The Guardian and Observer, LondonGoogle Scholar
  132. 132.
    Flachowsky G et al (2007) Studies on feeds from genetically modified plants (GMP) – Contributions to nutritional and safety assessment. Anim Feed Sci Technol 133(1–2):2–30CrossRefGoogle Scholar
  133. 133.
    Aumaitre A (2004) Safety assessment and feeding value for pigs, poultry and ruminant animals of pest protected (Bt) plants and herbicide tolerant (glyphosate, glufosinate) plants: interpretation of experimental results observed worldwide on GM plants. Italian J Anim Sci 3(2):107–121Google Scholar
  134. 134.
    Paarlberg R (2006) Are genetically modified (GM) crops a commercial risk for Africa? Int J Technol Globalisation 2(1–2):81–92Google Scholar
  135. 135.
    Cohen JI, Paarlberg R (2002) Explaining restricted approval and availability of GM crops in developing countries. AgBiotechNet 4:1–6Google Scholar
  136. 136.
    Gruere GP, Carter CA, Farzin YH (2008) What labelling policy for consumer choice? The case of genetically modified food in Canada and Europe. Canad J Econom-Revue Canadienne D Economique 41(4):1472–1497CrossRefGoogle Scholar
  137. 137.
    Gruere GP, Rosegrant MW (2008) Assessing the implementation effects of the biosafety protocol’s proposed stringent information requirements for genetically modified commodities in countries of the Asia Pacific economic cooperation. Rev Agric Econom 30(2):214–232CrossRefGoogle Scholar
  138. 138.
    Gruere GP, Sengupta S (2009) Biosafety decisions and perceived commercial risks, The role of GM-free private standards. In: IFPRI Discussion Paper 00847, Environment and Production Technology Division. FPRI, Washington DC, p 40Google Scholar
  139. 139.
    Greenpeace (2007) Contamination Report 2006, annual review of cases of contamination, illegal planting and negative side effects of genetically modified organisms. Greenpeace International, Amsterdam, p 24Google Scholar
  140. 140.
    Greenpeace (2008) Contamination Report 2007, annual review of cases of contamination, illegal planting and negative side effects of genetically modified organisms. Greenpeace International, Amsterdam, p 48Google Scholar
  141. 141.
    ISAAA (2011) Cotton (Gossypium hirsutum l.) events. ISAAA 2011 11. Oct 2011. Available from: http://www.isaaa.org/gmapprovaldatabase/cropevents/default.asp?CropID=6
  142. 142.
    Sadashivappa P, Qaim M (2009) Bt cotton in India: development of benefits and the role of government seed price interventions. AgBioForum 12:172–183Google Scholar
  143. 143.
    Mueller-Jung J (2007) Wie verpackt man eine Kulturrevolution in Watte? How to wrap up a cultural revolution in cotton wool?. In: Frankfurter Allgemeine Zeitung. Frankfurt. p N1Google Scholar
  144. 144.
    Gruere G, Methta-Bhatt P, Sengupta D (2008) Bt cotton and farmer suicides in India, reviewing the evidence. IFPRI-Discussion Paper 2008, 00808Google Scholar
  145. 145.
    Gruere G, Sengupta D (2011) Bt cotton and farmer suicides in India: an evidence-based assessment. J Develop Stud 47(2):316–337CrossRefGoogle Scholar
  146. 146.
    Shiva V (2004) The suicide economy of corporate globalisation. Z Net – The spirit of resistance lives 2004. Available from: http://www.zcommunications.org/the-suicide-economy-of-corporate-globalisation-byvandana2-shiva
  147. 147.
    Sunilkumar G et al (2006) From the cover: engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol. Proc Natl Acad Sci 103(48):18054–18059. doi:10.1073/pnas.0605389103CrossRefGoogle Scholar
  148. 148.
    Choudhary B, Gaur K (2011) Bt cotton in India, a multipurpose crop. In: ISAA (ed) Celebrating 10 years. International Service for the Aquisition of Agri-Biotech Applications, Biotech Information Center, New Delhi, p 6Google Scholar
  149. 149.
    Graff G, Hochman G, Zilberman D (2009) The political economy of agricultural biotechnology policies. AgBioForum 12:1–13, http://www.agbioforum.org/v12n1/v12n1a04-graff.htm and http://www.botanischergarten.ch/Regulation/Graff-Political-Economy-Policies-2009.pdf
  150. 150.
    Ayal S, Hochman G (2009) Ignorance or integration: the cognitive processes underlying choice behavior. J Behav Decis Mak 22(4):455–474CrossRefGoogle Scholar
  151. 151.
    Ministerio da Ciencia e Technologia (2005) CTN Bio, Biosafety Law Nº 11.105, of 24 March 2005. Ministerio da Ciencia e Technologia, Brazilia, p 17Google Scholar
  152. 152.
    European Parliament and European Council (2003) Regulation (EC) No 1829/2003. Off J Euro Union L 268(1):1–23, 20030922Google Scholar
  153. 153.
    The European parliament and the council of the European union (2010) EU-Regulation-GMO-free regions, GMOs: Member states to be given full responsibility on cultivation in their territories, IP/10/921. 20100713, The European parliament and the council of the European union, Brussels, p 2Google Scholar
  154. 154.
    James C (2009) Global status of commercialized biotech/GM Crops. In: ISAA (ed) AAA briefs. The International Service for the Acquisition of Agri-biotech Applications (ISAAA), IthacaGoogle Scholar
  155. 155.
    Galvao A (2010) Celeres, Biotechnology Report 2010. 20100809, Uberlandia, Matto Grosso, Celeres, p 7Google Scholar
  156. 156.
    Marques R, Neto CGA (2007) The Brazilian system of innovation in biotechnology: a preliminary study. J Technol Manag Innov 2(1):55–63Google Scholar
  157. 157.
    Mendonca-Hagler L et al (2008) Trends in biotechnology and biosafety in Brazil. Environ Biosaf Res 7(3):115–121CrossRefGoogle Scholar
  158. 158.
    Silveira JM, Ferreira J, Dal Poz ME, Alssad A (2004) Biotecnologia e recursos genéticos: desafios e oportunidades para o Brasil/Biotechnology and genetic resources: challenges and opportunities for Brazil. Campinas Instituto de Economia, Rio de Janeiro, p 412Google Scholar
  159. 159.
    Frohme M et al (2000) Mapping analysis of the Xylella fastidiosa genome. Nucl Acids Res 28(16):3100–3104CrossRefGoogle Scholar
  160. 160.
    Simpson AJG et al (2000) The genome sequence of the plant pathogen Xylella fastidiosa. Nature 406(6792):151–157CrossRefGoogle Scholar
  161. 161.
    Vasconcelos A (2003) The complete genome sequence of Chromobacterium violaceum reveals remarkable and exploitable bacterial adaptability. Proc Nat Acad Sci USA 100(20):11660–11665CrossRefGoogle Scholar
  162. 162.
    Magnani GS et al (2010) Diversity of endophytic bacteria in Brazilian sugarcane. Genet Molec Res 9(1):250–258CrossRefGoogle Scholar
  163. 163.
    Mendes R et al (2007) Diversity of cultivated endophytic bacteria from sugarcane: Genetic and biochemical characterization of Burkholderia cepacia complex isolates. Appl Environ Microbiol 73(22):7259–7267CrossRefGoogle Scholar
  164. 164.
    Editorial N (2010) Brazil’s biotech boom. Nature 466(7304):295–295Google Scholar
  165. 165.
    Bonfim K et al (2007) RNAi-mediated resistance to bean golden mosaic virus in genetically engineered common bean (Phaseolus vulgaris). Molec Plant Microbe Interact 20(6):717–726CrossRefGoogle Scholar
  166. 166.
    Oda L (2011) Approval of Brazilian transgenic beans has social importance, says ANBio in the Sacramento Bee. PRN Newswire, AnBio, Sao Paulo, p 2Google Scholar
  167. 167.
    Paganelli A et al (2010) Glyphosate-based herbicides produce teratogenic effects on vertebrates by impairing retinoic acid signaling. Chem Res ToxicolGoogle Scholar
  168. 168.
    Chassy B, Parrott W (2009) Is this study believable? Examples from animal studies with GM foods. Agric Biotechnol 9. doi: http://www.agribiotech.info/details and http://www.botanischergarten.ch/Peer-Review/Chassy-Parrott-Believable-2009.doc
  169. 169.
    Antoniou M et al (2010) GM Soy, sustainable?, responsible?, GV-SOJA, Nachhaltig? Verantwortungsbewusst? German, p 11Google Scholar
  170. 170.
    Martin-Orue SM et al (2002) Degradation of transgenic DNA from genetically modified soya and maize in human intestinal simulations. Brit J Nutr 87(6):533–542CrossRefGoogle Scholar
  171. 171.
    Netherwood T et al (2004) Assessing the survival of transgenic plant DNA in the human gastrointestinal tract. Nat Biotechnol 22(2):204–209CrossRefGoogle Scholar
  172. 172.
    Netherwood T et al (1999) Gene transfer in the gastrointestinal tract. Appl Environ Microbiol 65(11):5139–5141Google Scholar
  173. 173.
    Zhang L et al (2011) Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell ResGoogle Scholar
  174. 174.
    GMwatch (20110921) We incorporate genetic information from the food we eat new study GMwatch website. http://www.gmwatch.org, DOI: http://www.gmwatch.org/index.php?option=com_content&view=article&id=13423:we-incorporate-genetic-information-from-the-food-we-eat-new-study
  175. 175.
    Auer C, Frederick R (2009) Crop improvement using small RNAs: applications and predictive ecological risk assessments. Trends Biotechnol 27(11):644–651CrossRefGoogle Scholar
  176. 176.
    Fransen R (2007) Peer review: too much of a good thing? Scientist 21(9):18–18Google Scholar
  177. 177.
    Waltz E (2009) Battlefield, papers suggesting that biotech crops might harm the environment attract a hail of abuse from other scientists, News feature. Nature 461:27–32CrossRefGoogle Scholar
  178. 178.
    Ammann K (2011) Review: is the impact of Bt maize on non-target insects significantly negative?. ASK-FORCE contribution AF-8 AF-8, 23, 20111002, DOI: http://www.ask-force.org/web/AF-8-Lovei/AF-8-Lovei-Non-Target-20111002-opensource.pdf
  179. 179.
    Reiss T, Lacasa ID (2007) Benchmarking national biotechnology policy across Europe: a systems approach using quantitative and qualitative indicators. Res Eval 16(4):331–339CrossRefGoogle Scholar
  180. 180.
    Linkov F, Lovalekar M, LaPorte R (2006) Scientific journals are “faith based”: is there science behind peer review? J Roy Soc Med 99(12):596–598CrossRefGoogle Scholar
  181. 181.
    Lubchenco J (1998) Entering the century of the environment: a new social contract for science. Science 279(5350):491–497CrossRefGoogle Scholar
  182. 182.
    Linkov F, Lovalekar M, LaPorte R (2007) Quality control of epidemiological lectures online: scientific evaluation of peer review. Croatian Med J 48(2):249–255Google Scholar
  183. 183.
    Ammann K (2007) Evaluations faculty of 1000, manuscript and links. p 3Google Scholar
  184. 184.
    Hansen M (2009) Statement from Michael Hansen, CEO of Elsevier’s health sciences division, regarding Australia based sponsored journal practices between 2000 and 2005. Elsevier Website 7 May 2009, doi: http://www.elsevier.com/wps/find/authored_newsitem.cws_home/companynews05_01203 and http://www.ask-force.org/web/Peer-Review/Hansen-Statement-ELSEVIER-2009.pdf
  185. 185.
    Goldacre B (2009) Peer review is flawed but the best we’ve got. In: The Guardian.Google Scholar
  186. 186.
    Smith R (2005) Medical journals are an extension of the marketing arm of pharmaceutical companies. Plos Med 2(5):364–366CrossRefGoogle Scholar
  187. 187.
    Smith R (2003) Medical journals and pharmaceutical companies: uneasy bedfellows. Brit Med J 326(7400):1202–1205CrossRefGoogle Scholar
  188. 188.
    Scott A (2007) Peer review and the relevance of science. Futures 39(7):827–845CrossRefGoogle Scholar
  189. 189.
    Graff GD, Newcomb J (2003) Agricultural biotechnology at the crossroads, Part 1: the changing structure of the industry. Bio-era, p 26Google Scholar
  190. 190.
    Kostoff R (2002) Citation analysis of research performer quality. Scientometrics 53(1):49–71CrossRefGoogle Scholar
  191. 191.
    Rosi-Marshall EJ et al (2007) Toxins in transgenic crop byproducts may affect headwater stream ecosystems. Proc Nat Acad Sci USA 104:16204–16208CrossRefGoogle Scholar
  192. 192.
    Tank JL et al (2010) Occurrence of maize detritus and a transgenic insecticidal protein (Cry1Ab) within the stream network of an agricultural landscape. Proc Nat Acad SciGoogle Scholar
  193. 193.
    Beachy RN et al (2008) The burden of proof: a response to Rosi-Marshall et al. Proc Nat Acad Sci 105:16204–16208CrossRefGoogle Scholar
  194. 194.
    Parrott W (2008) Study of Bt impact on caddisflies overstates its conclusions: response to Rosi-Marshall et al. Proc Nat Acad Sci 105: E10Google Scholar
  195. 195.
    McHughen A et al (2007) Letter to the editor of PNAS, related to the publication of Rosi-Marshall, E. PNAS, WashingtonGoogle Scholar
  196. 196.
    Velimirov A et al (2008) Biological effects of transgenic maize NK603xMON810 fed in long term reproduction studies in mice, Report, in Forschungsberichte der Sektion IV Band 3/2008, Bundesministerium für Gesundheit Familie und Jugend Sektion IV (ed) Herausgeber, Medieninhaber und Hersteller: Bundesministerium für Gesundheit, Familie und Jugend, Sektion IV Radetzkystraße 2, 1031 Wien, p 109Google Scholar
  197. 197.
  198. 198.
    Sinha G (2009) Up in arms. Nat Biotechnol 27(7):592–594CrossRefGoogle Scholar
  199. 199.
    Dona A, Arvanitoyannis IS (2009) Health risks of genetically modified foods. Crit Rev Food Sci Nutr 49(2):164–175CrossRefGoogle Scholar
  200. 200.
    Tang H, Tan S, Cheng X (2009) A survey on sentiment detection of reviews. Exp Syst Appl 36:10760–10773CrossRefGoogle Scholar
  201. 201.
    Ammann K (20090828) Review: genomic misconception of transgenesis, The difference between GM- and non-GM-crops on the level of molecular processes has been overestimated. ASK-FORCE contribution AF-7 AF-7, 57 DOI: http://www.ask-force.org/web/AF-7-Dona-rebuttal/AF-7-Dona-20090828-opensource.pdf
  202. 202.
    Chassy BM (2009) Global regulation of transgenic crops. In: Kriz AL, Larkins BA (eds) Molecular genetic approaches to maize improvement. Springer, Berlin, pp 107–124CrossRefGoogle Scholar
  203. 203.
    Intemann KK, de Melo-Martin I (2008) Regulating scientific research: should scientists be left alone? Faseb J 22(3):654–658CrossRefGoogle Scholar
  204. 204.
    de Melo-Martin I, Meghani Z (2008) Beyond risk – A more realistic risk - benefit analysis of agricultural biotechnologies. Embo Reports 9(4):302–306CrossRefGoogle Scholar
  205. 205.
    Seralini GE, Cellier D, de Vendomois JS (2007) New analysis of a rat feeding study with a genetically modified maize reveals signs of hepatorenal toxicity. Arch Environ Contamin Toxicol:596–602Google Scholar
  206. 206.
    EFSA (2007) Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials. Food Chem Toxical 46(Suppl 1):S2–S70Google Scholar
  207. 207.
    EFSA (2007) Statement of the scientific panel on genetically modified organisms on the analysis of data from a 90-day rat feeding study with MON 863 maize. European Food Safety Authority, p 5Google Scholar
  208. 208.
    EFSA (2007) Press release: EFSA reaffirms its risk assessment of genetically modified maize MON 863 maize. European Food Safety Authority, p 5Google Scholar
  209. 209.
    Imposteurs. Tout (ou presque) sur le CRIIGEN 2011 (cited 12. Oct 2011. Available from: http://imposteurs.over-blog.com/pages/Tout_ou_presque_sur_le_CRIIGEN-4536267.html
  210. 210.
    Kuntz M (2011) Seralini critique: the latest opus of “parallel science” of Criigen from March 2011. Parallel Science (Website) 2011 (cited 12 Oct 2011). Available from: http://ddata.over-blog.com/xxxyyy/1/39/38/37/Critical_views_on_Seralini_20110710.pdf
  211. 211.
    Watson JD, Crick FHC (1953) Genetical implications of the structure of deoxyribonucleic acid. Nature 171(4361):964–967CrossRefGoogle Scholar
  212. 212.
    Watson JD, Crick FHC (1953) Molecular structure of nucleic acids - a structure for deoxyribose nucleic acid. Nature 171(4356):737–738CrossRefGoogle Scholar
  213. 213.
    Wilkins MHF et al (1953) Helical structure of crystalline deoxypentose nucleic acid. Nature 172(4382):759–762CrossRefGoogle Scholar
  214. 214.
    Berg P et al (1975) Summary statement of asilomar conference on recombinant DNA-molecules. Proc Nat Acad Sci USA 72(6):1981–1984CrossRefGoogle Scholar
  215. 215.
    Berg P, Singer M (1995) The recombinant-DNA controversy - 20 years later. Bio-Technol 13(10):1132–1134CrossRefGoogle Scholar
  216. 216.
    Friedberg EC (2007) The writing life of James D. Watson. Adler Museum Bull 33(2):3–16Google Scholar
  217. 217.
    Klug A (2004) The discovery of the DNA double helix. J Molec Biol 335(1):3–26CrossRefGoogle Scholar
  218. 218.
    Bennett D, Glasner P, Travis D (1986) The politics of uncertainty. Routledge and Kegan Paul plc, London, p 218Google Scholar
  219. 219.
    NRC (National-Research-Council) (1989) Field testing genetically modified organism. Framework for decisions. In: National Research Council (ed) Committee on scientific evaluation of the introduction of genetically modified microorganisms and plants into the environment, NAO Sciences. The National Academy Press, Washington, DC, p 184Google Scholar
  220. 220.
    Lehrman S (1992) Overregulation could damage united-states biotechnology, says report. Nature 359(6396):569–569Google Scholar
  221. 221.
    Mundell I (1992) Britain wrestles with EC rule on modified organisms. Nature 359(6396):569–569Google Scholar
  222. 222.
    McClintock B (1930) A cytological demonstration of the location of an interchange between two non-homologous chromosomes of Zea mays. Proc Nat Acad Sci USA 16:791–796CrossRefGoogle Scholar
  223. 223.
    McClintock B (1953) Induction of instability at selected loci in Maize. Genetics 38(6):579–599Google Scholar
  224. 224.
    Fedoroff N (1994) Mcclintock, Barbara (June 16, 1902 September 2, 1992). Proc Am Philos Soc 138(3):431–445Google Scholar
  225. 225.
    Fedoroff N, Schlappi M, Raina R (1995) Epigenetic regulation of the maize Spm transposon. Bioessays 17(4):291–297CrossRefGoogle Scholar
  226. 226.
    Shapiro JA (1997) Genome organization, natural genetic engineering and adaptive mutation. Trends Genet 13(3):98–104CrossRefGoogle Scholar
  227. 227.
    Lewin R (1983) A naturalist of the genome. Science 222(4622):402–405CrossRefGoogle Scholar
  228. 228.
    Arber W (2000) Genetic variation: molecular mechanisms and impact on microbial evolution. Fems Microbiol Rev 24(1):1–7CrossRefGoogle Scholar
  229. 229.
    Arber W (2002) Roots, strategies and prospects of functional genomics. Curr Sci 83(7):826–828Google Scholar
  230. 230.
    Arber W (2003) Elements for a theory of molecular evolution. Gene 317(1–2):3–11CrossRefGoogle Scholar
  231. 231.
    Arber W (2004) Biological evolution: lessons to be learned from microbial population biology and genetics. Res Microbiol 155(5):297–300CrossRefGoogle Scholar
  232. 232.
    Arber W (1994) Molecular evolution: comparison of natural and engineered genetic variations. Pontifical Acad Sci Scripta Varia 103:90–101Google Scholar
  233. 233.
    Hackett P (2002) Genetic engineering: what are we fearing? Trans Res 11(2):97–99CrossRefGoogle Scholar
  234. 234.
    Ghatnekar L, Jaarola M, Bengtsson BO (2006) The introgression of a functional nuclear gene from Poa to Festuca ovina. Proc Biol Sci 273(1585):395–399CrossRefGoogle Scholar
  235. 235.
    Baudo MM et al (2006) Transgenesis has less impact on the transcriptome of wheat grain than conventional breeding. Plant Biotechnol J 4(4):369–380CrossRefGoogle Scholar
  236. 236.
    Batista R et al (2008) Microarray analyses reveal that plant mutagenesis may induce more transcriptomic changes than transgene insertion. Proc Nat Acad Sci USA 105(9):3640–3645CrossRefGoogle Scholar
  237. 237.
    Shewry PR et al (2007) Are GM and conventionally bred cereals really different? Trends Food Sci Technol 18(4):201–209CrossRefGoogle Scholar
  238. 238.
    Ammann K (2009) Feature: why farming with high tech methods should integrate elements of organic agriculture. New Biotechnol 25:378–388CrossRefGoogle Scholar
  239. 239.
    Barnabás B, Obert B, Kovács G (1999) Colchicine, an efficient genome-doubling agent for maize (Zea mays L.) microspores cultured in anthero. Plant Cell Reports 18(10):858–862CrossRefGoogle Scholar
  240. 240.
    Awoleye F et al (1994) Nuclear-DNA content and in-vitro induced somatic polyploidization cassava (Manihot-Esculenta crantz) breeding. Euphytica 76(3):195–202CrossRefGoogle Scholar
  241. 241.
    Reynolds MP, van Ginkel M, Ribaut JM (2000) Avenues for genetic modification of radiation use efficiency in wheat. J Exp Botany 51:459–473CrossRefGoogle Scholar
  242. 242.
    Molnar I, Benavente E, Molnar-Lang M (2009) Detection of intergenomic chromosome rearrangements in irradiated Triticum aestivumAegilops biuncialis amphiploids by multicolour genomic in situ hybridization. Genome 52(2):156–165CrossRefGoogle Scholar
  243. 243.
    Schouten HJ, Jacobsen E (2007) Are mutations in genetically modified plants dangerous? J Biomed BiotechnolGoogle Scholar
  244. 244.
    Latham JR, Wilson AK, Steinbrecher RA (2006) The mutational consequences of plant transformation. J Biomed Biotechnol 2006:1–7CrossRefGoogle Scholar
  245. 245.
    Wilson A, Latham J, Steinbrecher R (2006) Transformation-induced mutations in transgenic plants: analysis and biosafety implications. Biotechnol Genet Eng Rev 23(11):1–26Google Scholar
  246. 246.
    Baarends WM, van der Laan R, Grootegoed JA (2001) DNA repair mechanisms and gametogenesis. Reproduction 121(1):31–39CrossRefGoogle Scholar
  247. 247.
    Dong CM, Whitford R, Langridge P (2002) A DNA mismatch repair gene links to the Ph2 locus in wheat. Genome 45(1):116–124CrossRefGoogle Scholar
  248. 248.
    Morikawa K, Shirakawa M (2001) Three-dimensional structural views of damaged-DNA recognition: T4 endonuclease V, E coli Vsr protein, and human nucleotide excision repair factor XPA (vol 460, pg 257, 2000). Mutation Res DNA Repair 485(3):267–268CrossRefGoogle Scholar
  249. 249.
    Lammerts van Bueren ET, Struik PC, Jacobsen E (2002) Ecological concepts in organic farming and their consequences for an organic crop ideotype. Netherlands J Agric Sci 50(1):1–26Google Scholar
  250. 250.
    Lammerts van Bueren ET, Struik PC, Jacobsen E (2003) Organic propagation of seed and planting material: an overview of problems and challenges for research. Njas-Wageningen J Sci 51(3):263–277CrossRefGoogle Scholar
  251. 251.
    Anonymous P (1992) Pose no special risks just because of the processes used to make them. Nature 356(6364):1–2Google Scholar
  252. 252.
    Andree P (2002) The biopolitics of genetically modified organisms in Canada. J Canad Stud Revue D Etudes Canadiennes 37(3):162–191Google Scholar
  253. 253.
    Berwald D, Carter CA, Gruere GP (2006) Rejecting new technology: the case of genetically modified wheat. Am J Agric Econ 88(2):432–447CrossRefGoogle Scholar
  254. 254.
    Macdonald P, Yarrow S (2002) Regulation of Bt crops in Canada. In: 8th international colloquium on invertebrate pathology and microbial control/35th annual meeting of the SIP/6th international conference on Bacillus Thuringiensis. Academic Press Inc Elsevier Science, Iguassu Falls, BrazilGoogle Scholar
  255. 255.
    Ramjoue C (2007) The transatlantic rift in genetically modified food policy. J Agric Environ Ethics 20(5):419–436CrossRefGoogle Scholar
  256. 256.
    Ramjoue C (2007) The transatlantic rift in genetically modified food policy. Thesis presented to the Faculty of Arts. University of Zurich, Zurich, p 263Google Scholar
  257. 257.
    Kalaitzandonakes N, Marks L, Vickner SS (2005) Sentiments and acts towards genetically modified foods. Int J Biotechnol 7(1–3):161–177CrossRefGoogle Scholar
  258. 258.
    Snyder LU et al (2008) European union’s moratorium impact on food biotechnology: a discussion-based scenario. J Nat Resour Life Sci Educ 37:27–31Google Scholar
  259. 259.
    Herman RA, Chassy BM, Parrott W (2009) Compositional assessment of transgenic crops: an idea whose time has passed. Trends Biotechnol 27(10):555–557, Corrected proofCrossRefGoogle Scholar
  260. 260.
    Romeis J et al (2008) Assessment of risk of insect-resistant transgenic crops to nontarget arthropods. Nat Biotechnol 26(2):203–208CrossRefGoogle Scholar
  261. 261.
    Raybould AF (2010) Reducing uncertainty in regulatory decision-making for transgenic crops: more ecological research or shrewder environmental risk assessment? GM crops 1(1):1–7CrossRefGoogle Scholar
  262. 262.
    Raven P et al (2006) Where next for genome sequencing? Science 311(5760):468–468CrossRefGoogle Scholar
  263. 263.
    Kesavan PC, Swaminathan MS (2008) Strategies and models for agricultural sustainability in developing Asian countries. Philos Trans Roy Soc B-Biol Sci 363:877–891CrossRefGoogle Scholar
  264. 264.
    Plan D, van den Eede G (2010) The EU legislation on GMOs. JRC Scientific and Technical Reports. European Commission Joint Research Denter, JRC, and Institute for Health and Consumer Protection IHCP. Publications Office of the European Union, © European Union, LuxembourgGoogle Scholar
  265. 265.
    McLean MA et al (2002) A conceptual framework for implementing biosafety: linking policy, capacity, and regulation. In: ISNAR briefing papers. ISNAR, International Service for National Agricultural Research, Washington DC, pp 1–12Google Scholar
  266. 266.
    Graff GD, Zilberman D, Bennett AB (2009) The contraction of agbiotech product quality innovation. Nat Biotechnol 27(8):702–704CrossRefGoogle Scholar
  267. 267.
    Miller JK, Bradford KJ (2010) The regulatory bottleneck for biotech specialty crops. Nat Biotechnol 28(10):1012–1014CrossRefGoogle Scholar
  268. 268.
    Strauss SH et al (2009) Strangled at birth? Forest biotech and the convention on biological diversity. Nat Biotech 27(6):519–527CrossRefGoogle Scholar
  269. 269.
    McLean MA, Charest PJ (2000) The regulation of transgenic trees in North America. Silvae Genetica 49(6):233–239Google Scholar
  270. 270.
    Kalaitzandonakes N, Alston JM, Bradford KJ (2007) Compliance costs for regulatory approval of new biotech crops. Nat Biotechnol 25(5):509–511CrossRefGoogle Scholar
  271. 271.
    Morandini P (2007) (20071211) A serious cover up story unveiled in Italy concerning a GM crop field trial, Press release. DOI: http://www.botanischergarten.ch/ASK-FORCE-NEWS-Maize-Lombardia/Morandini-press-release-20071211.pdf
  272. 272.
    Morandini P (2008) Al contadino non far sapere. Espansione n. 5–41, Polenta, May 2008, p 3Google Scholar
  273. 273.
    Marshall A (2007) Another inconvenient truth. In Europe, no one apparently wants to listen if you have good news about genetically modified organisms (GMOs). Nat Biotechnol 25(12):1330CrossRefGoogle Scholar
  274. 274.
    Ammann K (2009) Biodiversity and GM crops. In: Ferry N, Gatehouse AMR (eds) Environmental impact of genetically modified/novel crops, released in March, 423p. CAB International, Wallingford, p 28Google Scholar
  275. 275.
    Ronald PC, Adamchak RW (2008) Tomorrow’s table: organic farming, genetics, and the future of food. Oxford University Press, Oxford, p 232Google Scholar
  276. 276.
    deRenobales-Scheifler M (2009) More sustainable food: genetically modified seeds in organic farming. Junta General del Principado de Asturias Sociedad Internacional de Bioética (SIBI), Gijon, p 119Google Scholar
  277. 277.
    Paarlberg R (2009) The ethics of modern agriculture. Society 46(1):4–8CrossRefGoogle Scholar
  278. 278.
    Herring RJ (2007) The genomics revolution and development studies: science, poverty and politics. J Develop Stud 43(1):1–30CrossRefGoogle Scholar
  279. 279.
    Paarlberg RL (2002) The real threat to GM crops in poor countries: consumer and policy resistance to GM foods in rich countries. Food Policy 27(3):247–250CrossRefGoogle Scholar
  280. 280.
    Driessen PL (2006) Eco-imperialism: green power–black death. Academic Foundation, New DelhiGoogle Scholar
  281. 281.
    Alene AD, Coulibaly O (2009) The impact of agricultural research on productivity and poverty in sub-Saharan Africa. Food Policy 34(2):198–209CrossRefGoogle Scholar
  282. 282.
    Gruère G, Sengupta D (2009) GM-free private standards and their effects on biosafety decision-making in developing countries. Food Policy 34(5):399–406CrossRefGoogle Scholar
  283. 283.
    Spielman DJ, Cohen JI, Zambrano P (2007) Are developing-country policies and investments promoting research and research partnerships in agricultural biotechnology? Int J Biotechnol 9(6): ISSN 0963-6048(print)|1741-5020(electronic)Google Scholar
  284. 284.
    Cohen JI (2005) Poorer nations turn to publicly developed GM crops. Nat Biotechnol 23(1):27–33CrossRefGoogle Scholar
  285. 285.
    Alhassan WS (2002) Agrobiotechnology application in West and Central Africa (2002 Survey outcome). CORAF/WECARD–IITA International Institute of Tropical Agriculture, Ibadan, p 107Google Scholar
  286. 286.
    Gruere G, Bouët A, Mevel S (2007) Genetically modified food and international trade: the case of India, Bangladesh, Indonesia and the Philippines. In: IFPRI Discussion Paper 00740. IFPRI, Washington, p 60Google Scholar
  287. 287.
    Smale M et al (2008) The economic impact of transgenic crops in developing countries: a note on the methods. Int J Biotechnol 10(6):519–555CrossRefGoogle Scholar
  288. 288.
    Falck-Zepeda JB, Traxler G, Nelson RG (2000) Surplus distribution from the introduction of a biotechnology innovation. Am J Agric Econ 82(2):360–369CrossRefGoogle Scholar
  289. 289.
    Pray CE et al (2006) Costs and enforcement of biosafety regulations in India and China. Int J Technol Globalisation 2(1–2):137–57Google Scholar
  290. 290.
    Antle JM (1999) Benefits and costs of food safety regulation. Food Policy 24(6):605–623CrossRefGoogle Scholar
  291. 291.
    Shelton AM (2003) Considerations for conducting research in agricultural biotechnology. J Invertebr Pathol 83(2):110–112CrossRefGoogle Scholar
  292. 292.
    Kochetkova T (2006) The transatlantic conflict over GM food: cultural background. In: Kaiser M, Lien M (eds) Ethics and the politics of food. Wageningen Academic, Wageningen, pp 325–329Google Scholar
  293. 293.
    Laget P, Cantley M (2001) European responses to biotechnology: research, regulation, and dialogue. Issues Sci Technol 17(4):37–42Google Scholar
  294. 294.
    Ramessar K et al (2010) Going to ridiculous lengths (mdash) European coexistence regulations for GM crops. Nat Biotech 28(2):133–136CrossRefGoogle Scholar
  295. 295.
    Bradford KJ et al (2005) Regulating transgenic crops sensibly: lessons from plant breeding, biotechnology and genomics. Nat Biotechnol 23(4):439–444CrossRefGoogle Scholar
  296. 296.
    Stein AJ et al (2007) Plant breeding to control zinc deficiency in India: how cost-effective is biofortification? Public Health Nutr 10(5):492–501CrossRefGoogle Scholar
  297. 297.
    Stein AJ, Qaim M (2007) The human and economic cost of hidden hunger. Food Nutr Bull 28(2):125–134Google Scholar
  298. 298.
    Stein AJ, Sachdev HPS, Qaim M (2007) What we know and don’t know about golden rice. Nat Biotechnol 25(6):624–624Google Scholar
  299. 299.
    Humphrey JH et al (1998) Neonatal vitamin A supplementation: effect on development and growth at 3 y of age. Am J Clin Nutr 68(1):109–117Google Scholar
  300. 300.
    Humphrey JH, West KP, Sommer A (1992) Vitamin-a-deficiency and attributable mortality among under-5-year-olds. Bull World Health Organization 70(2):225–232Google Scholar
  301. 301.
    Depee S et al (1995) Lack of improvement in vitamin-a status with increased consumption of dark-green leafy vegetables. Lancet 346(8967):75–81CrossRefGoogle Scholar
  302. 302.
    Mayer JE, Pfeiffer WH, Beyer P (2008) Biofortified crops to alleviate micronutrient malnutrition. Genome studies Molec Genet edited by Juliette de Meaux and Maarten Koornneef/Plant Biotechnol, edited by Andy Greenland and Jan Leach 11(2):166–170Google Scholar
  303. 303.
    Miller HI (2009) A golden opportunity, squandered. Trends Biotechnol 27(3):129–130CrossRefGoogle Scholar
  304. 304.
    Potrykus I (2003) Nutritionally enhanced rice to combat malnutrition disorders of the poor. Nutr Rev 61(6):S101–S104CrossRefGoogle Scholar
  305. 305.
    Stein AJ et al (2008) Potential impacts of iron biofortification in India. Soc Sci Med 66(8):1797–1808CrossRefGoogle Scholar
  306. 306.
    Stein AJ, Sachdev HPS, Qaim M (2006) Potential impact and cost-effectiveness of Golden Rice. Nat Biotechnol 24(10):1200–1201CrossRefGoogle Scholar
  307. 307.
    Qaim M, Stein AJ (2008) Economic consequences of Golden Rice. In: Invited presentation at the fourth conference of the European plant science organisation. Toulon (Cote d'Azur), FranceGoogle Scholar
  308. 308.
    Qaim M, Stein AJ, Meenakshi JV (2007) Economics of biofortification. In: Otsuka K, Kalirajan K (eds) Contributions of agricultural economics to critical policy issues. Blackwell, Malden, pp 119–133Google Scholar
  309. 309.
    Qaim M, Pray CE, Zilberman D (2008) Economic and social considerations in the adoption of Bt crops. In: Romeis J, Shelton AM, Kennedy GG (eds) Integration of insect-resistant genetically modified crops within IPM programs. Springer, Dordrect, pp 329–356CrossRefGoogle Scholar
  310. 310.
    Bouis HE (2007) The potential of genetically modified food crops to improve human nutrition in developing countries. J Develop Stud 43(1):79–96CrossRefGoogle Scholar
  311. 311.
    Atanassov AB, Brink A, Burachik J, Cohen M, Dhawan JI, Ebora V, Falck-Zepeda RV, Herrera-Estrella J, Komen L, Low J, Omaliko FC, Odhiambo E, Quemada B, Peng H, Sampaio Y, Sithole-Niang MJ, Sittenfeld I, Smale A, Sutrisno M, Valyasevi R, Zafar Y, Zambrano P (2004) To reach the poor: results from the ISNAR-IFPRI next harvest study on genetically modified crops, in EPTD Discussion Paper No. 116. 2004, ISNAR-IFPRI, International Food Policy Research Institute, Washington DCGoogle Scholar
  312. 312.
    Potrykus I (2010) Regulation must be revolutionized. Nature 466(7306):561–561CrossRefGoogle Scholar
  313. 313.
    Dhlamini Z et al (2005) Status of research and application of crop technologies in developing countries, preliminary assessment. In: FAO (ed) FAO Reports, FAO, Rome, p 62Google Scholar
  314. 314.
    Krattiger A, Mahoney RT (2006) Intellectual property and public health. Bull World Health Organization 84(5):340–340CrossRefGoogle Scholar
  315. 315.
    Atkinson RC et al (2003) Public sector collaboration for agricultural IP management including corrigendum of fig. on front page of text, vol. 302, 5648, pp 1152–1152. Science 301(5630):174–175CrossRefGoogle Scholar
  316. 316.
    Beachy R et al (2002) Divergent perspectives on GM food. Nat Biotechnol 20(12):1195–1196CrossRefGoogle Scholar
  317. 317.
    Krattiger A, Mahoney RTL, Nelsen L, Thompson GA, Bennett AB, Satyanarayana K, Graff GD, Fernandez C, Kowalsky SP (2007) Intellectual property management in health and agricultural innovation a handbook of best practice. MIHR/PIPRA, Oxford/Davis, pp 1539–1559Google Scholar
  318. 318.
    Singh A, Hallihosur S, Rangan L (2009) Changing landscape in biotechnology patenting. World Patent Information, pp 219–225Google Scholar
  319. 319.
    Wright B (2008) Plant genetic engineering and intellectual property protection. Agricultural Biotechnology in California Series Publication, no. 8186Google Scholar
  320. 320.
    Lawson C (2004) Patents and the CGIAR system of international agricultural research centres’ germplasm collections under the International Treaty on Plant Genetic resources for food and agriculture. Aust J Agric Res 55(3):307–313CrossRefGoogle Scholar
  321. 321.
    Delmer DP et al (2003) Intellectual property resources for international development in agriculture. Plant Physiol 133(4):1666–1670CrossRefGoogle Scholar
  322. 322.
    Lempert DH (2009) A dependency in development indicator for NGOs and international organizations.Global Jurist 9(2): Article 6Google Scholar
  323. 323.
    Neidecker-Gonzales O, Nestel P, Bouis H (2007) Estimating the global costs of vitamin A capsule supplementation: a review of the literature. Food Nutr Bull 28:307–316Google Scholar
  324. 324.
    Gressel J, Zilberstein A (2003) Let them eat (GM) straw. Trends Biotechnol 21(12):525–530CrossRefGoogle Scholar
  325. 325.
    Potrykus I (2010) Constraints to biotechnology introduction for poverty alleviation. New Biotechnol 27(5):447–448CrossRefGoogle Scholar
  326. 326.
    Ademola AA (2011) Global capture of crop biotechnology in developing world over a decade. J Genet Eng Biotechnol (in press)Google Scholar
  327. 327.
    Taverne D (2007) The March of unreason. Oxford University Press, Oxford, p 320Google Scholar
  328. 328.
    Durant J (2005) The march of unreason: science, democracy, and the new fundamentalism. Nature 435(7040):277–278CrossRefGoogle Scholar
  329. 329.
    Taverne D (2005) The new fundamentalism, Commentary. Nat Biotechnol 23(4):415–416CrossRefGoogle Scholar
  330. 330.
    Herring RJ (2008) Whose numbers count? Probing discrepant evidence on transgenic cotton in the Warangal district of India. Int J Mult Res Approach 2:145–159CrossRefGoogle Scholar
  331. 331.
    Marris E (2006) Environmental activism: in the name of nature. Nature 443(7111):498–501CrossRefGoogle Scholar
  332. 332.
    Atkinson HJ, Urwin PE (2008) Europe needs to protect its transgenic crop research. Nature 453(7198):979–979CrossRefGoogle Scholar
  333. 333.
    Leader SH, Probst P (2003) The earth liberation front and environmental terrorism. Terrorism Polit Violence 15(4):37–58CrossRefGoogle Scholar
  334. 334.
    Finkel E (2011) Vandals attack transgenic wheat test plot. Science Insider, July 2011Google Scholar
  335. 335.
  336. 336.
    Kuntz M (2011) Academic and governmental research on GMOs has been the target of numerous acts of vandalism in Europe. OGM, environnement, santé et politique. DOI: http://www.marcel-kuntz-ogm.fr/article-news-55055856.html, news in English, French and Spanish and http://ddata.over-blog.com/xxxyyy/1/39/38/37/public-research-vandalized.pdf and http://www.marcel-kuntz-ogm.fr/article-news-55055856.html and http://www.ask-force.org/web/Field-Destruction/Kuntz-Public-Government-Research-Vandalism-Europe-2011.pdf
  337. 337.
    Da Silva W (2011) In focus: the sad, sad demise of Greenpeace in cosmos. About Luna Media Pty Ltd, the boutique publishing company behind COSMOS. Sidney, AustraliaGoogle Scholar
  338. 338.
    Gough M (2011) Greenpeace destroys CSIRO wheat GM trial in Cosmos. About Luna Media Pty Ltd, the boutique publishing company behind COSMOS. Sidney, AustraliaGoogle Scholar
  339. 339.
    Smith J (2003) Seeds of deception. Yes! Books, Lowa, p 304Google Scholar
  340. 340.
    Smith J (2007) Genetic roulette, the documented health risks of genetically engineered foods. YES ! Books and Chelsea Green, Fairfield Iowa, p 319, second printing ednGoogle Scholar
  341. 341.
    Miller H (2008) Auf wiedersehen, academic freedom. Wall Street J Europe. p 3Google Scholar
  342. 342.
    Rao CK (2010) Moratorium on Bt Brinjal, a review of the order of the Minister of Environment and Forests, Government of India. Foundation for biotechnology awareness and education, Bangalore, p 74Google Scholar
  343. 343.
    Weese TL, Bohs L (2010) Eggplant origins: out of Africa, into the orient. Taxon 59(1):49–56Google Scholar
  344. 344.
  345. 345.
    Apel A (2010) The costly benefits of opposing agricultural biotechnology. New Biotechnol 27(5):635–640CrossRefGoogle Scholar
  346. 346.
    Borlaug NE (2000) Ending world hunger. The promise of biotechnology and the threat of antiscience zealotry. Plant Physiol 124(2):487–490CrossRefGoogle Scholar
  347. 347.
    Hemming D (2006) Swiss vote encourages Austria’s anti-GM stance. Outlook Agric 35(1):82–82Google Scholar
  348. 348.
    Motion J, Weaver CK (2005) The epistemic struggle for credibility: rethinking media relations. J Commun Manag 9(3):246–255CrossRefGoogle Scholar
  349. 349.
    Burke D (2004) GM food and crops: what went wrong in the UK? Many of the public’s concerns have little to do with science. Embo Reports 5(5):432–436CrossRefGoogle Scholar
  350. 350.
    Blas X (2009) Bill Gates shifts focus to fighting hunger. Financial Times, London, p 1Google Scholar
  351. 351.
    Miller H, Morandini P, Ammann K (2008) Is biotechnology a victim of anti-science bias in scientific journals? Trends Biotechnol 26(3):122–125, Electronic Prepublication 17 Feb 2008, Hardcopy available in MarchCrossRefGoogle Scholar
  352. 352.
    Horton R (1999) Secret society – Scientific peer review and Pusztai’s potatoes. Tls-the Times Literary Suppl 5046:8–9Google Scholar
  353. 353.
    Horton R (1999) GM food debate – Editors reply. The Lancet 354(9191):1729–1729CrossRefGoogle Scholar
  354. 354.
    Horton R (1999) Genetically modified foods: “absurd” concern or welcome dialogue? The Lancet 354(9187):1314–1315CrossRefGoogle Scholar
  355. 355.
    Horton R (1999) Health risks of genetically modified foods, editorial, reply to Mitchell and Bradbury, Lancet, p. 1769. The Lancet 353(9167):1811–1811CrossRefGoogle Scholar
  356. 356.
    Horton R (1999) Scientific misconduct: exaggerated fear but still real and requiring a proportionate response. The Lancet 354(9172):7–8CrossRefGoogle Scholar
  357. 357.
    Ammann K (20110111) Review: Arpad Pusztai’s feeding experiments of GM potatoes with lectins to rats: anatomy of a controversy 1998–2009. ASK-FORCE contribution AF-2 AF-2, 46. DOI: http://www.ask-force.org/web/AF-2-Pusztai/AF-2-Pusztai-Food-Safety-20110111.opensource.pdf
  358. 358.
    Quist D, Chapela IH (2001) Transgenic DNA introgressed into traditional maize landraces in Oaxaca, Mexico. Nature 414(6863):541–543CrossRefGoogle Scholar
  359. 359.
    Campbell P (2002) Quist-chapela paper: editorial note 2. Nature 417(6892):897–897, 27 June 2002Google Scholar
  360. 360.
    Pineyro-Nelson A et al (2009) Transgenes in Mexican maize: molecular evidence and methodological considerations for GMO detection in landrace populations. Molec Ecol 18(4):750–761CrossRefGoogle Scholar
  361. 361.
    Schubert D, Tribe D. comments (2006) Three faces of science fraud. GMO Pundit, DOI: http://gmopundit.blogspot.com/2006/02/david-schubert-alleges-systematic.html.
  362. 362.
    Bradford KJ et al (2005) Regulatory regimes for transgenic crops – Response. Nat Biotechnol 23(7):787–789CrossRefGoogle Scholar
  363. 363.
    Schubert D (2005) Regulatory regimes for transgenic crops. Nat Biotechnol 23(7):785–787CrossRefGoogle Scholar
  364. 364.
    Punnett RC (1928) Scientific papers of William Bateson. Cambridge University Press, CambridgeGoogle Scholar
  365. 365.
    Strick J (1999) Darwinism and the origin of life: the role of H.C. Bastian in the British spontaneous generation debates, 1868–1873. J History Biol 32(1):51–92CrossRefGoogle Scholar
  366. 366.
    Chassy BN (2002) Food safety evaluation of crops produced through biotechnology. J Am Coll Nutr 21(3):166S–173SGoogle Scholar
  367. 367.
    Chassy B et al (2007) Nutritional and safety assessments of foods and feeds nutritionally improved through biotechnology: case studies. J Food Sci 72:R131–R137CrossRefGoogle Scholar
  368. 368.
    Shelton AM et al (2009) Appropriate analytical methods are necessary to assess nontarget effects of insecticidal proteins in GM crops through meta-analysis (Response to Andow et al. 2009). Environ Entomol 38(6):1533–1538CrossRefGoogle Scholar
  369. 369.
    Duan JJ et al (2010) Extrapolating non-target risk of Bt crops from laboratory to field. Biol Lett 6(1):74–77CrossRefGoogle Scholar
  370. 370.
    Broer I et al (2011) Response to the criticism by Taube et al. in ESE 23:1, 2011, on the booklet “Green Genetic Engineering”. German Research Foundation (DFG), Environmental Sciences Europe, vol 23, issue 1, p 16Google Scholar
  371. 371.
    Green JM, Owen MDK (2010) Herbicide-resistant crops: utilities and limitations for herbicide-resistant weed management J Agric Food ChemGoogle Scholar
  372. 372.
    Johnson WG et al (2009) Influence of glyphosate-resistant cropping systems on weed species shifts and glyphosate-resistant weed populations. Euro J Agron 31(3):162–172CrossRefGoogle Scholar
  373. 373.
    Duke SO, Powles S (2009) Glyphosate-resistant crops and weeds: now and in the future. AgBioForum 12(3&4):346–357Google Scholar
  374. 374.
    Vila-Aiub MM et al (2008) Glyphosate-resistant weeds of South American cropping systems: an overview. Pest Manag Sci 64(4):366–371CrossRefGoogle Scholar
  375. 375.
    Powles SB (2008) Evolved glyphosate-resistant weeds around the world: lessons to be learnt. Pest Manag Sci 64(4):360–365CrossRefGoogle Scholar
  376. 376.
    Powles SB, Preston C (2006) Evolved glyphosate resistance in plants: biochemical and genetic basis of resistance. Weed Technol 20(2):282–289CrossRefGoogle Scholar
  377. 377.
    Neve P (2008) Simulation modelling to understand the evolution and management of glyphosate resistant in weeds. Pest Manag Sci 64(4):392–401CrossRefGoogle Scholar
  378. 378.
    Mikulka J, Chodova D (2000) Long-term study on the occurrence of weeds resistant to herbicides in the Czech Republic. (Zeitschrift Fur Pflanzenkrankheiten Und Pflanzenschutz) J Plant Dis Protect 107:373–376Google Scholar
  379. 379.
    Hilbeck A, Schmidt JEU (2006) Another view on Bt proteins – how specific are they and what else might they do? Biopest Int 2(1):1–50Google Scholar
  380. 380.
    Hilbeck A, Meier M, Raps A (2000) Review on non-target organisms and Bt-plants. Ecostrat GmbH, Ecological Technology Assessment Consulting, Amsterdam, p 80Google Scholar
  381. 381.
    Hilbeck A et al (1998) Toxicity of Bacillus thuringiensis Cry1Ab toxin to the predator Chrysoperla carnea (Neuroptera: Chrysopidae). Environ Entomol 27(5):1255–1263Google Scholar
  382. 382.
    Hilbeck A et al (1999) Prey-mediated effects of Cry1Ab toxin and protoxin and Cry2A protoxin on the predator Chrysoperla carnea. Entomol Exper Et Applicata 91(2):305–316CrossRefGoogle Scholar
  383. 383.
    Romeis J, Dutton A, Bigler F (2004) Bacillus thuringiensis toxin (Cry1Ab) has no direct effect on larvae of the green lacewing Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). J Insect Physiol 50(2–3):175–183CrossRefGoogle Scholar
  384. 384.
    Marshall A (2007) GM soybeans and health safety – a controversy reexamined, additional texts. Nat Biotechnol 25(9):981–987CrossRefGoogle Scholar
  385. 385.
    Ammann K (2009) Review web version: are rat organs damaged after feeding on GM soybeans? The Ermakova Case. ASK-FORCE contribution No. 4, 20, 20090801. DOI: http://www.ask-force.org/web/AF-4-Ermakova/AF-4-Ermakova-20090828-web.pdf
  386. 386.
    Seralini GE, Cellier D, de Vendomois JS (2007) New analysis of a rat feeding study with a genetically modified maize reveals signs of hepatorenal toxicity. Arch Environ Contamin Toxicol 52:596–602CrossRefGoogle Scholar
  387. 387.
    OECD (1998) 408 repeated dose 90-day oral toxicity study in rodents (Updated Guideline, Adopted 21st Sept 1998)Google Scholar
  388. 388.
    OECD (1998) 407 repeated dose 28-day oral toxicity study in rodents, Adopted by the Council on 27th July 1995, in OECD Guideline for the testing of chemicalsGoogle Scholar
  389. 389.
    Ammann K (20110921) Summary of 11 ASK-FORCE contributions on biosafety of biotechnology crops. ASK-FORCE contributions AF summary, 69. DOI: http://www.ask-force.org/web/ASK-FORCE-Summary/ASK-FORCE-Summary.pdf
  390. 390.
    Candolfi MP et al (2004) A faunistic approach to assess potential side-effects of genetically modified Bt-corn on non-target arthropods under field conditions. Biocontrol Sci Technol 14(2):129–170CrossRefGoogle Scholar
  391. 391.
    Marvier M et al (2007) A meta-analysis of effects of Bt cotton and maize on nontarget invertebrates. Science 316(5830):1475–1477. doi:10.1126/science.1139208CrossRefGoogle Scholar
  392. 392.
    Wolfenbarger LL et al (2008) Bt crop effects on functional guilds of non-target arthropods: a meta-analysis. PLoS ONE 3(5):e2118CrossRefGoogle Scholar
  393. 393.
    Naranjo SE (2009) Impacts of Bt crops on non-target invertebrates and insecticide use patterns. CAB Rev Perspect Agric Veterinary Sci, Nutr Nat Resour 4:11–23Google Scholar
  394. 394.
    Duan JJ et al (2008) A meta-analysis of effects of Bt crops on honey bees (Hymenoptera: Apidae). PLoS ONE 3(1):e1415CrossRefGoogle Scholar
  395. 395.
    Ammann Ki et al (2004) Biosafety in agriculture: is it justified to compare directly with natural habitats? Frontiers in Ecology, Forum: GM crops: balancing predictions of promise and peril, vol 2, pp 54–160Google Scholar
  396. 396.
    Ammann K (2005) Effects of biotechnology on biodiversity: herbicide-tolerant and insect-resistant GM crops. Trends Biotechnol 23(8):388–394CrossRefGoogle Scholar
  397. 397.
    PRRI Public Research and Regulation Initiative(2009) Letter to CBD: LMOs that are likely to have adverse environmental impacts. 20090914, Downloads of PRRI www.pubresreg.org, 3 DOI: http://www.pubresreg.org/index.php?option=com_docman&task=doc_download&gid=490
  398. 398.
    Gupta A (2010) Transparency to what end? Governing by disclosure through the biosafety clearing house. Environ Plann C-Govern Policy 28(1):128–144CrossRefGoogle Scholar
  399. 399.
    Felke M et al (2010) Effect of Bt-176 maize pollen on first instar larvae of the Peacock butterfly (Inachis io) (Lepidoptera; Nymphalidae). Environ Biosafety Res 9(1):5–12, Received: 20 November 2008, Accepted: 5 December 2009, online publication 28. October 2010CrossRefGoogle Scholar
  400. 400.
    Ammann K (20090911) ASK-FORCE structure and possible contributions. ASK-FORCE contributions, 12 DOI: http://www.botanischergarten.ch/ASK-FORCE-Strategy/ASK-FORCE-General-List-20090911.pdf
  401. 401.
    Freeland C A hard-pressed trade. In: Financial times, 20070504. Financial Times, LondonGoogle Scholar
  402. 402.
    Moore A (2006) Bad science in the headlines – Who takes responsibility when science is distorted in the mass media? Embo Reports 7(12):1193–1196CrossRefGoogle Scholar
  403. 403.
    Erjavec K, Erjavec E (2009) Changing EU agricultural policy discourses? The discourse analysis of Commissioner’s speeches 2000–2007. Food Policy 34(2):218–226CrossRefGoogle Scholar
  404. 404.
    Brabeck-Lemathe P (2008) Nestlé Chairman calls on European policymakers to reconsider opposition to genetically modified (GM) crops; Says 10,000 liters of water required to produce as little as one to two liters of biodiesel. In: Finfacts Business and Finace Portal. Finfacts, Irland, 6 pp. http://www.ask-force.org/web/Nestle/Brabeck-Finfact-Irland-Interview-2009.pdf
  405. 405.
    Rogers C, Farson RE (2007) Active listening, excerpt 1957. University of Chicago Industrial Relations Center, Gordon Training International, ChicagoGoogle Scholar
  406. 406.
    Conklin J (2005) Wicked problems and social complexity. In: Conklin J (ed) Dialogue mapping: building shared understanding of wicked problems. Wiley, Chichester, p 20Google Scholar
  407. 407.
    Peter LJ, Hull R (2009) The Peter principle, why things always go wrong. HarperCollins, New York, 192 ppGoogle Scholar
  408. 408.
    Blackmore C (2007) What kinds of knowledge, knowing and learning are required for addressing resource dilemmas?: a theoretical overview. Environ Sci Policy 10(6):512–525CrossRefGoogle Scholar
  409. 409.
    Zwart NH (2007) Genomics and self-knowledge: implications for societal research and debate. New Genet Soc 26(2):181–202CrossRefGoogle Scholar
  410. 410.
    Ikerd JE (1993) The need for a system approach to sustainable agriculture. Agric Ecosyst Environ 46(1–4):147–160CrossRefGoogle Scholar
  411. 411.
    Fairclough N (2009) Language and globalization. Semiotica 173(1–4):317–342Google Scholar
  412. 412.
    Scoones I (2008) Mobilizing against GM crops in India, South Africa and Brazil. J Agrarian Change 8(2–3):315–344CrossRefGoogle Scholar
  413. 413.
    Weissmann G (2006) DDT is back: let us spray! Faseb J 20:2427–2429CrossRefGoogle Scholar
  414. 414.
    WHO (2005) WHO position on DDT use. In: WHO (ed) Disease vector control under the stockholm convention on persistent organic pollutants. WHO, Geneva, p 2Google Scholar
  415. 415.
    Tren R, Bate R (2001) Malaria and the DDT story. In: T.I.o.E.A (ed) The Institute of Economic Affairs, London, 112 ppGoogle Scholar
  416. 416.
    Losey JE, Raynor LS, Carter ME (1999) Transgenic pollen harms Monarch larvae. Nature 399:214CrossRefGoogle Scholar
  417. 417.
    Ammann K (2007) Reconciling traditional knowledge with modern agriculture: a guide for building bridges. In: Krattiger A, Mahoney RTL, Nelsen L, Thompson GA, Bennett AB, Satyanarayana K, Graff GD, Fernandez C, Kowalsky SP (eds) Intellectual property management in health and agricultural innovation a handbook of best practices, Chapter 16.7. MIHR, PIPRA, Oxford/Davis, pp 1539–1559Google Scholar
  418. 418.
    Gerhards J (1997) The discursive versus the liberal public sphere: an empirical critique of Jurgen Haberma’ concept of the public sphere. Kolner Zeitschrift Fur Soziologie Und Sozialpsychologie 49(1):1–34Google Scholar
  419. 419.
    Conklin J (2003) Wicked problems and fragmentation. (cited 2003; White Papers, This paper is Chapter 2 in Dialog mapping: making sense of project fragmentation Conklin J, forthcoming). Available from: http://www.cognexus.org/id29.htm
  420. 420.
    Fischer G (2000) Symmetry of ignorance, social creativity, and meta-design. Knowledge-Based Syst 13(7–8):527–537CrossRefGoogle Scholar
  421. 421.
    Ammann K (2004) The role of science in the application of the precautionary approach. In: Fischer R, Schillberg S (eds) Molecular farming, Plant-made Pharmaceuticals and Technical Proteins. Wiley-VCH Verlag GmbH & Co KGaA, Weinheim, pp 291–302Google Scholar
  422. 422.
    Rittel H (1984) Second generation design methods. In: Cross N (ed) Developments in design methodology. Wiley, New York, pp 317–327Google Scholar
  423. 423.
    Rith C, Dubberly H (2007) Why Horst W. J. Rittel Matters. Des Issues 23(1):72–74CrossRefGoogle Scholar
  424. 424.
    Rith C et al (2007) Bibliography of Horst W.J. Rittel. Des Issues 23(1):78–88Google Scholar
  425. 425.
    Schmidt I et al (2004) SEEbalance reg – managing sustainability of products and processes with the socio-eco-efficiency analysis by BASF. Greener Manag Int 45:79–94Google Scholar
  426. 426.
    Renn O (2008) Risk Governance, coping with uncertainty in a complex world. Earthscan, LondonGoogle Scholar
  427. 427.
    Moirand S (2003) Communicative and cognitive dimensions of discourse on science in the French mass media. Discourse Stud 5(2):175–206Google Scholar
  428. 428.
    Chiapello E, Fairclough N (2002) Understanding the new management ideology: a transdisciplinary contribution from critical discourse analysis and new sociology of capitalism. Discourse Soc 13(2):185–208CrossRefGoogle Scholar
  429. 429.
    Motion J, Leitch S (1996) A discursive perspective from New Zealand: another world view. Public Relat Rev 22(3):297–309CrossRefGoogle Scholar
  430. 430.
    Clark CE (2000) Differences between public relations and corporate social responsibility: an analysis. Public Relat Rev 26(3):363–380CrossRefGoogle Scholar
  431. 431.
    Galtung J, Ruge MH (1965) The structure of foreign-news – the presentation of the congo, cuba and cyprus crises in 4 norwegian newspapers. J Peace Res 2(1):64–91CrossRefGoogle Scholar
  432. 432.
    Renn O (2006) Risk communication – consumers between information and irritation. J Risk Res 9(8):833–849CrossRefGoogle Scholar
  433. 433.
    Chen GKC (1975) What is systems-approach. Interfaces 6(1):32–37CrossRefGoogle Scholar
  434. 434.
    Priest SH, Bonfadelli H, Rusanen M (2003) The “trust gap” hypothesis: predicting support for biotechnology across national cultures as a function of trust in actors. Risk Anal 23(4):751–766CrossRefGoogle Scholar
  435. 435.
    Iyengar S et al (2009) “Dark areas of ignorance” revisited comparing international affairs knowledge in Switzerland and the United States. Commun Res 36(3):341–358CrossRefGoogle Scholar
  436. 436.
    Bonfadelli H, Dahinden U, Leonarz M (2002) Biotechnology in Switzerland: high on the public agenda, but only moderate support. Public Understand Sci 11(2):113–130CrossRefGoogle Scholar
  437. 437.
    von Grebmer K, Omamo SW (2007) Options for a rational dialogue on the acceptance of biotechnology. Biotechnol J 2(9):1121–1128CrossRefGoogle Scholar
  438. 438.
    Huang JC, Newell S (2003) Knowledge integration processes and dynamics within the context of cross-functional projects. Int J Project Manag 21(3):167–176CrossRefGoogle Scholar
  439. 439.
    Beer S (2004) Reflections of a cybernetician on the practice of planning. Kybernetes 33(3–4):767–773CrossRefGoogle Scholar
  440. 440.
    Feldman M, Lowe N (2008) Consensus from controversy: Cambridge’s biosafety ordinance and the anchoring of the biotech industry. Euro Plann Stud 16(3):395–410CrossRefGoogle Scholar
  441. 441.
    Bogner A (2010) Participation as a laboratory experiment paradoxes of deliberation on technology issues by lay people. Zeitschrift Fur Soziologie 39(2):87–105Google Scholar
  442. 442.
    Moore P (2000) Trees are the answer. Forest Prod J 50(10):12–19Google Scholar
  443. 443.
    Moore P (2000) A challenge: protect biodiversity and produce wood. J Forestry 98(8):A2–A3Google Scholar
  444. 444.
    Moore P (2002) Communication through participation, getting it right, environmentalism for the 21st Century. In: Ammann K, Papazova AB (eds) 1st dialogue on science. Academia Engelberg, EngelbergGoogle Scholar
  445. 445.
    Kahane A (2004) Solving Tough Problems: An Open Way of Talking, Listening, and Creating New Realities. In: Baetz BW (ed) Berrett-Koehler Publishers, San Francisco, 150 ppGoogle Scholar
  446. 446.
    Schenkel R (2010) The challenge of feeding scientific advice into policy-making. Science 330(6012):1749–1751CrossRefGoogle Scholar
  447. 447.
    Rogers-Hayden T, Campbell JR (2003) Re-negotiating science in environmentalists’ submissions to New Zealand’s royal commission on genetic modification. Environ Values 12:515–534CrossRefGoogle Scholar
  448. 448.
    Reich KH (2008) Science-and-religion/spirituality/theology dialogue: what for and by whom? Zygon 43(3):705–718CrossRefGoogle Scholar
  449. 449.
    Papazova AB (2010) What do we need as visionaries: progress or development? abstract biovision 2010. Biovision 2010, DOI: http://www.bibalex.org/bva2010/speakers/SpeakerDetails.aspx?m=1&sp=XOHvrH47wZRXTXP5lzyEvA

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Botanical GardenUniversity of BernBernSwitzerland