Advertisement

Breast Ablation for Breast Imagers and Interventional Radiologists

Reference work entry

Abstract

The long history of success with less-invasive, breast conservation surgery in combination with radiation therapy and systemic chemo-hormonal therapy serves as an excellent background to address recent rapid advancements in technology for both imaging and ablation. This chapter primarily will address the complexities of breast cancer ablation, although over one million benign resections are still being performed in the USA every year for growing or painful fibroadenomas. The choice of different imaging modalities for baseline workup extends to their role in guidance and follow-up. Ablation technologies also need to be carefully evaluated in relation to their optimum usage with the various imaging choices and guidance. Breast MRI has rapidly become the “gold standard” but has severe incompatibility issues with several ablation technologies and may never be cost-effective enough to address large sectors of the breast cancer population. We attempt to balance these crucial issues at a time when a new paradigm for breast tumor ablation is emerging.

Keywords

Breast Cancer Positive Surgical Margin Ablation Zone Breast Magnetic Resonance Imaging Ablation Modality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    US Preventive Services Task Force. Screening for breast cancer: US Preventive Services Task Force recommendation statement. Ann Intern Med. 2009;151:716–26.CrossRefGoogle Scholar
  2. 2.
    Woolf SH. The 2009 breast cancer screening recommendations of the US Preventive Services Task Force. JAMA. 2010;303:162–3.CrossRefPubMedGoogle Scholar
  3. 3.
    Petitti DB, Calonge N, LeFevre ML, Melnyk BM, Wilt TJ, Schwartz JS, U.S. Preventive Services Task Force. Breast cancer screening: from science to recommendation. Radiology. 2010;256:8–14.CrossRefPubMedGoogle Scholar
  4. 4.
    Kopans DB. The 2009 US Preventive Services Task Force (USPSTF) guidelines are not supported by science: the scientific support for mammography screening. Radiol Clin North Am. 2010;48:843–57.CrossRefPubMedGoogle Scholar
  5. 5.
    Lehman CD, Isaacs C, Schnall MD, Pisano ED, Ascher SM, Weatherall PT, et al. Cancer yield of mammography, MR, and US in high-risk women: prospective multi-institution breast cancer screening study. Radiology. 2007;244:381–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Saslow D, Boetes C, Burke W, Harms S, Leach MO, Lehman CD, American Cancer Society Breast Cancer Advisory Group, et al. American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography. CA Cancer J Clin. 2007;57:75–89.CrossRefPubMedGoogle Scholar
  7. 7.
    Uematsu T, Yuen S, Kasami M, Uchida Y. Comparison of magnetic resonance imaging, multidetector row computed tomography, ultrasonography, and mammography for tumor extension of breast cancer. Breast Cancer Res Treat. 2008;112:461–74.CrossRefPubMedGoogle Scholar
  8. 8.
    Neubauer H, Li M, Kuehne-Heid R, Schneider A, Kaiser WA. High grade and non-high grade ductal carcinoma in situ on dynamic MR mammography: characteristic findings for signal increase and morphological pattern of enhancement. Br J Radiol. 2003;76:3–12.CrossRefPubMedGoogle Scholar
  9. 9.
    Nielsen M, Thomsen JL, Primdahl S, et al. Breast cancer and atypia among young and middle-aged women: a study of 110 medicolegal autopsies. Br J Cancer. 1987;56:814–9.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Schnitt SJ, Silen W, Sadowsky NL, et al. Ductal carcinoma in situ (intraductal carcinoma) of the breast-current concepts. N Engl J Med. 1988;318:898–903.CrossRefPubMedGoogle Scholar
  11. 11.
    Littrup PJ, Goodman AC, Mettlin CJ. The benefit and cost of prostate cancer early detection. The Investigators of the American Cancer Society-National Prostate Cancer Detection Project. CA Cancer J Clin. 1993;43:134–49.CrossRefPubMedGoogle Scholar
  12. 12.
    Littrup PJ, Goodman AC, Mettlin CJ, Murphy GP. Cost analyses of prostate cancer screening: frameworks for discussion. Investigators of the American Cancer Society-National Prostate Cancer Detection Project. J Urol. 1994;152(5 Pt 2):1873–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Pauker SG, Kassirer JP. Decision analysis. N Engl J Med. 1987;316:250–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Sotiriou C, Pusztai L. Gene-expression signatures in breast cancer. N Engl J Med. 2009;360:790–800.CrossRefPubMedGoogle Scholar
  15. 15.
    Billar JA, Dueck AC, Stucky CC, Gray RJ, Wasif N, Northfelt DW, McCullough AE, Pockaj BA. Triple-negative breast cancers: unique clinical presentations and outcomes. Ann Surg Oncol. 2010;17 Suppl 3:384–90. Epub 2010 Sep 19.CrossRefPubMedGoogle Scholar
  16. 16.
    Boyd NF, Martin LJ, Bronskill M, Yaffe MJ, Duric N, Minkin S. Breast tissue composition and susceptibility to breast cancer. J Natl Cancer Inst. 2010;102:1224–37. Epub 2010 Jul 8.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Arora N, King TA, Jacks LM, Stempel MM, Patil S, Morris E, Morrow M. Impact of breast density on the presenting features of malignancy. Ann Surg Oncol. 2010;17 Suppl 3:211–8. Epub 2010 Sep 19.CrossRefPubMedGoogle Scholar
  18. 18.
    Yeap BH, Muniandy S, Lee SK, Sabaratnam S, Singh M. Specimen shrinkage and its influence on margin assessment in breast cancer. Asian J Surg. 2007;30:183–7.CrossRefPubMedGoogle Scholar
  19. 19.
    Pritt B, Tessitore J, Weaver D, Blaszyk H. The effect of tissue fixation and processing on breast cancer size. Hum Pathol. 2005;36:756–60.CrossRefPubMedGoogle Scholar
  20. 20.
    Yang JH, Lee WS, Kim SW, Woo SU, Kim JH, Nam SJ. Effect of core-needle biopsy vs. fine-needle aspiration on pathologic measurement of tumor size in breast cancer. Arch Surg. 2005;140:125–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Ozdemir A, Voyvoda NK, Gultekin S, Tuncbilek I, Dursun A, Yamac D. Can core biopsy be used instead of surgical biopsy in the diagnosis and prognostic factor analysis of breast carcinoma? Clin Breast Cancer. 2007;7:791–5.CrossRefPubMedGoogle Scholar
  22. 22.
    Flanagan MB, Dabbs DJ, Brufsky AM, Beriwal S, Bhargava R. Histopathologic variables predict Oncotype DXtrade mark Recurrence Score. Mod Pathol. 2008 Mar 21. Epub ahead of printGoogle Scholar
  23. 23.
    Habel LA, Shak S, Jacobs MK, et al. A population-based study of tumor gene expression and risk of breast cancer death among lymph node-negative patients. Breast Cancer Res. 2006;8:R25. Epub 2006 May 31.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Conlin AK, Seidman AD. Use of the Oncotype DX 21-gene assay to guide adjuvant decision making in early-stage breast cancer. Mol Diagn Ther. 2007;11:355–60.CrossRefPubMedGoogle Scholar
  25. 25.
    Miller AR, Brandao G, Prihoda TJ, et al. Positive margins following surgical resection of breast carcinoma: analysis of pathologic correlates. J Surg Oncol. 2004;86:134–40.CrossRefPubMedGoogle Scholar
  26. 26.
    Tafra L, Smith SJ, Woodward JE, Fernandez KL, Sawyer KT, Grenko RT. Pilot trial of cryoprobe-assisted breast-conserving surgery for small ultrasound-visible cancers. Ann Surg Oncol. 2003;10:1018–24.CrossRefPubMedGoogle Scholar
  27. 27.
    Heywang-Köbrunner SH, Sinnatamby R, Lebeau A, Lebrecht A, Britton PD, Schreer I; Consensus Group. Interdisciplinary consensus on the uses and technique of MR-guided vacuum-assisted breast biopsy (VAB): results of a European consensus meeting. Eur J Radiol. 2008 Aug 22. Epub ahead of print.Google Scholar
  28. 28.
    Hynynen K, Pomeroy O, Smith DN, Huber PE, McDannold NJ, Kettenbach J, Baum J, Singer S, Jolesz FA. MR imaging-guided focused ultrasound surgery of fibroadenomas in the breast: a feasibility study. Radiology. 2001;219:176–85.CrossRefPubMedGoogle Scholar
  29. 29.
    Schmitz AC, Gianfelice D, Daniel BL, Mali WP, van den Bosch MA. Image-guided focused ultrasound ablation of breast cancer: current status, challenges, and future directions. Eur Radiol. 2008;18:1431–41.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Wu F, Wang ZB, Cao YD, Zhu XQ, Zhu H, Chen WZ, Zou JZ. “Wide local ablation” of localized breast cancer using high intensity focused ultrasound. J Surg Oncol. 2007;96:130–6.CrossRefPubMedGoogle Scholar
  31. 31.
    Berg WA, Blume JD, Cormack JB, Mendelson EB, Lehrer D, Böhm-Vélez M, ACRIN 6666 Investigators, et al. Combined screening with ultrasound and mammography vs mammography alone in women at elevated risk of breast cancer. JAMA. 2008;299:2151–63.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Berg WA, Gutierrez L, NessAiver MS, Carter WB, Bhargavan M, Lewis RS, Ioffe OB. Diagnostic accuracy of mammography, clinical examination, US, and MR imaging in preoperative assessment of breast cancer. Radiology. 2004;233:830–49.CrossRefPubMedGoogle Scholar
  33. 33.
    Hollingsworth AB, Stough RG, O’Dell CA, Brekke CE. Breast magnetic resonance imaging for preoperative locoregional staging. Am J Surg. 2008;196:389–97.CrossRefPubMedGoogle Scholar
  34. 34.
    Wiratkapun C, Duke D, Nordmann AS, Lertsithichai P, Narra V, Barton PT, Hildebolt CF, Bae KT. Indeterminate or suspicious breast lesions detected initially with MR imaging: value of MRI-directed breast ultrasound. Acad Radiol. 2008;15:618–25.CrossRefPubMedGoogle Scholar
  35. 35.
    Genson CC, Blane CE, Helvie MA, Waits SA, Chenevert TL. Effects on breast MRI of artifacts caused by metallic tissue marker clips. AJR Am J Roentgenol. 2007;188:372–6.CrossRefPubMedGoogle Scholar
  36. 36.
    Fornage BD, Sneige N, Ross MI, Mirza AN, Kuerer HM, Edeiken BS, Ames FC, Newman LA, Babiera GV, Singletary SE. Small (< or = 2-cm) breast cancer treated with US-guided radiofrequency ablation: feasibility study. Radiology. 2004;231:215–24.CrossRefPubMedGoogle Scholar
  37. 37.
    Noguchi M, Earashi M, Fujii H, Yokoyama K, Harada K, Tsuneyama K. Radiofrequency ablation of small breast cancer followed by surgical resection. J Surg Oncol. 2006;93:120–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Dowlatshahi K, Fan M, Gould VE, Bloom KJ, Ali A. Stereotactically guided laser therapy of occult breast tumors: work-in-progress report. Arch Surg. 2000;135:1345–52.CrossRefPubMedGoogle Scholar
  39. 39.
    van Esser S, Stapper G, van Diest PJ, van den Bosch MA, Klaessens JH, Mali WP, Borel Rinkes IH, van Hillegersberg R. Ultrasound-guided laser-induced thermal therapy for small palpable invasive breast carcinomas: a feasibility study. Ann Surg Oncol. 2009;16:2259–63.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Littrup PJ, Jallad B, Vorugu V, et al. Lethal isotherms of cryoablation in a phantom study: effects of heat load, probe size, and number. J Vasc Interv Radiol. 2009;20:1343–51.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Rubinsky B. Irreversible electroporation in medicine. Technol Cancer Res Treat. 2007;6:255–60.CrossRefPubMedGoogle Scholar
  42. 42.
    Littrup PJ, Jallad B, Chandiwala-Mody P, D’Agostini M, Adam BA, Bouwman D. Cryotherapy for breast cancer: a feasibility study without excision. J Vasc Interv Radiol. 2009;20:1329–41.CrossRefPubMedGoogle Scholar
  43. 43.
    Kaufman CS, Bachman B, Littrup PJ, White M, Carolin KA, Freeman-Gibb L, Francescatti D, Stocks LH, Smith JS, Henry CA, Bailey L, Harness JK, Simmons R. Office-based ultrasound-guided cryoablation of breast fibroadenomas. Am J Surg. 2002;184:394–400.CrossRefPubMedGoogle Scholar
  44. 44.
    Kaufman CS, Littrup PJ, Freeman-Gibb LA, et al. Office-based cryoablation of breast fibroadenomas with long-term follow-up. Breast J. 2005;11:344–50.CrossRefPubMedGoogle Scholar
  45. 45.
    Littrup PJ, Freeman-Gibb L, Andea A, White M, Amerikia KC, Bouwman D, Harb T, Sakr W. Cryotherapy for breast fibroadenomas. Radiology. 2005;234:63–72.CrossRefPubMedGoogle Scholar
  46. 46.
    Littrup PJ, Mody A, Sparschu R, Prchevski P, Montie J, Zingas AP, Grignon D. Prostatic cryotherapy: ultrasonographic and pathologic correlation in the canine model. Urology. 1994;44:175–83. discussion 183–174.CrossRefPubMedGoogle Scholar
  47. 47.
    Kam AW, Littrup PJ, Walther MM, Hvizda J, Wood BJ. Thermal protection during percutaneous thermal ablation of renal cell carcinoma. J Vasc Interv Radiol. 2004;15:753–8.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Wang H, Littrup PJ, Duan Y, Zhang Y, Feng H, Nie Z. Thoracic masses treated with percutaneous cryotherapy: initial experience with more than 200 procedures. Radiology. 2005;235:289–98.CrossRefPubMedGoogle Scholar
  49. 49.
    Ahmed A, Littrup P. Percutaneous cryotherapy of the thorax: safety considerations for complex cases. AJR Am J Roentgenol. 2006;186:1703–6.CrossRefPubMedGoogle Scholar
  50. 50.
    Littrup P, Ahmed A, Aoun H, Noujaim DL, Harb T, Nakat S, Abdallah K, Adam BA, Venkatramanamoorthy R, Sakr W, Pontes JE, Heilbrun LK. CT- guided percutaneous cryotherapy of renal masses. J Vasc Interv Radiol. 2007;18:383–92.CrossRefPubMedGoogle Scholar
  51. 51.
    Solomon LA, Munkarah AR, Vorugu VR, Deppe G, Adam B, Malone Jr JM, Littrup PJ. Image-guided percutaneous cryotherapy for the management of gynecologic cancer metastases. Gynecol Oncol. 2008;111:202–7.CrossRefPubMedGoogle Scholar
  52. 52.
    Bang HJ, Littrup PJ, Currier BP, Aoun HD, Heilbrun LK, Vaishampayan U, Adam B, Goodman AC. Percutaneous cryoablation of metastatic lesions from non-small-cell lung carcinoma: Initial survival, local control, and cost observations. Journal of Vascular and Interventional Radiology. 2012;23:761–9.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Bang HJ, Littrup PJ, Currier BP, Goodrich DJ, Aoun HD, Klein LC, Kuo JC, Heilbrun LK, Gadgeel S, Goodman AC. Percutaneous cryoablation of metastatic renal cell carcinoma for local tumor control: Feasibility, outcomes, and estimated cost effectiveness for palliation. Journal of Vascular and Interventional Radiology. 2012;23:770–7.CrossRefPubMedGoogle Scholar
  54. 54.
    Bang HJ, Littrup PJ, Currier BP, Goodrich DJ, Choi M, Heilbrun LK, and Goodman AC. Percutaneous cryoablation of metastatic lesions from colorectal cancer: Efficacy and feasibility with survival and cost-effectiveness observations. ISRN Minimally Invasive Surgery. 2012;2012:1–10.CrossRefGoogle Scholar
  55. 55.
  56. 56.
    Pfleiderer SO, Freesmeyer MG, Marx C, Kuhne-Heid R, Schneider A, Kaiser WA. Cryotherapy of breast cancer under ultrasound guidance: initial results and limitations. Eur Radiol. 2002;12:3009–14.PubMedGoogle Scholar
  57. 57.
    Roubidoux MA, Sabel MS, Bailey JE, Kleer CG, Klein KA, Helvie MA. Small (< 2.0-cm) breast cancers: mammographic and US findings at US-guided cryoablation--initial experience. Radiology. 2004;233:857–67.CrossRefPubMedGoogle Scholar
  58. 58.
    Pfleiderer SO, Marx C, Camara O, Gajda M, Kaiser WA. Ultrasound-guided, percutaneous cryotherapy of small (< or = 15 mm) breast cancers. Invest Radiol. 2005;40:472–7.CrossRefPubMedGoogle Scholar
  59. 59.
    Khatcheressian JL, Wolff AC, Smith TJ, Grunfeld E, Muss HB, Vogel VG, Halberg F, Somerfield MR, Davidson NE, American Society of Clinical Oncology. American Society of Clinical Oncology 2006 update of the breast cancer follow-up and management guidelines in the adjuvant setting. J Clin Oncol. 2006;24:5091–7.CrossRefPubMedGoogle Scholar
  60. 60.
    Nakamura S, Ishiyama M, Tsunoda-Shimizu H. Magnetic resonance mammography has limited ability to estimate pathological complete remission after primary chemotherapy or radiofrequency ablation therapy. Breast Cancer. 2007;14:123–30.CrossRefPubMedGoogle Scholar
  61. 61.
    Gorechlad JW, McCabe EB, Higgins JH, Likosky DS, Lewis PJ, Rosenkranz KM, Barth Jr RJ. Screening for recurrences in patients treated with breast-conserving surgery: is there a role for MRI? Ann Surg Oncol. 2008;15:1703–9.CrossRefPubMedGoogle Scholar
  62. 62.
    Vogl TJ, Naguib NN, Eichler K, Lehnert T, Ackermann H, Mack MG. Volumetric evaluation of liver metastases after thermal ablation: long-term results following MR-guided laser-induced thermotherapy. Radiology. 2008;249:865–71.CrossRefPubMedGoogle Scholar
  63. 63.
    Baek HM, Chen JH, Nie K, Yu HJ, Bahri S, Mehta RS, Nalcioglu O, Su MY. Predicting pathologic response to neoadjuvant chemotherapy in breast cancer by using MR imaging and quantitative 1H MR spectroscopy. Radiology. 2009;251:653–62.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Sharma U, Danishad KK, Seenu V, Jagannathan NR. Longitudinal study of the assessment by MRI and diffusion-weighted imaging of tumor response in patients with locally advanced breast cancer undergoing neoadjuvant chemotherapy. NMR Biomed. 2009;22:104–13.CrossRefPubMedGoogle Scholar
  65. 65.
    Kim SH, Jung SE, Kim HL, Hahn ST, Park GS, Park WC. The potential role of dynamic MRI in assessing the effectiveness of high-intensity focused ultrasound ablation of breast cancer. Int J Hyperthermia. 2010;26:594–603.CrossRefPubMedGoogle Scholar
  66. 66.
    Li J, Dershaw DD, Lee CF, Joo S, Morris EA. Breast MRI after conservation therapy: usual findings in routine follow-up examinations. AJR Am J Roentgenol. 2010;195:799–807.CrossRefPubMedGoogle Scholar
  67. 67.
    Chen JH, Nie K, Bahri S, Hsu CC, Hsu FT, Shih HN, Lin M, Nalcioglu O, Su MY. Decrease in breast density in the contralateral normal breast of patients receiving neoadjuvant chemotherapy: MR imaging evaluation. Radiology. 2010;255:44–52.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Imaging DivisionKarmanos Cancer InstituteDetroitUSA

Personalised recommendations