Skip to main content

Imaging of Interventional Therapies in Oncology: Magnetic Resonance Imaging

  • Reference work entry
  • First Online:
Image-Guided Cancer Therapy

Abstract

MRI is one of the main pillars of oncologic imaging and plays a vital role in the care of patients with cancer. Due to intrinsic proprieties such as superior soft tissue contrast resolution, multiplanar capability, functional imaging ability, and lack of ionizing radiation, MRI has become indispensible in the management of oncologic diseases. As the technology advances, its role will continue to expand at virtually every stage of patient care. In this chapter, we review the essential features of MRI in oncologic imaging and discuss the clinical use of MRI in the diagnosis, staging, treatment, and surveillance of common oncologic diseases. We also discuss recent and forthcoming advances in oncologic MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tatli S, Morrison PR, Tuncali K, Silverman SG. Interventional MRI for oncologic applications. Tech Vasc Interv Radiol. 2007;10(2):159–70.

    Article  PubMed  Google Scholar 

  2. Brenner DJ, Hall EJ. Computed tomography – an increasing source of radiation exposure. N Engl J Med. 2007;357:2277–84.

    Article  CAS  PubMed  Google Scholar 

  3. Kanal E, Shellock FG, Talagala L. Safety considerations in MR imaging. Radiology. 1990;176(3):593–606.

    Article  CAS  PubMed  Google Scholar 

  4. Kanal E, Borgstede JP, Barkovich AJ, American College of Radiology, et al. American College of Radiology white paper on MR safety. AJR Am J Roentgenol. 2002;178(6):1335–47.

    Article  PubMed  Google Scholar 

  5. Cowper SE, Robin HS, Steinberg SM, Su LD, Gupta S, LeBoit PE. Scleromyxoedema-like cutaneous diseases in renal-dialysis patients. Lancet. 2000;356(9234):1000–1.

    Article  CAS  PubMed  Google Scholar 

  6. Marckmann P, Skov L, Rossen K, Dupont A, Damholt MB, Heaf JG, Thomsen HS. Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. J Am Soc Nephrol. 2006;17(9):2359–62.

    Article  PubMed  Google Scholar 

  7. Shellock FG, Spinazzi A. MRI safety update 2008: part 1, MRI contrast agents and nephrogenic systemic fibrosis. AJR Am J Roentgenol. 2008;191(4):1129–39.

    Article  PubMed  Google Scholar 

  8. Cha S. Update on brain tumor imaging: from anatomy to physiology. AJNR Am J Neuroradiol. 2006;27:475–87.

    CAS  PubMed  Google Scholar 

  9. Koeller KK, Rosenblum RS, Morrison AL. Neoplasms of the spinal cord and filum terminale: radiologic-pathologic correlation. Radiographics. 2000;20(6):1721–49.

    Article  CAS  PubMed  Google Scholar 

  10. Thurnher MM, Law M. Diffusion-weighted imaging, diffusion-tensor imaging, and fiber tractography of the spinal cord. Magn Reson Imaging Clin N Am. 2009;17(2):225–44.

    Article  PubMed  Google Scholar 

  11. Caldemeyer KS, Mathews VP, Righi PD, Smith RR. Imaging features and clinical significance of perineural spread or extension of head and neck tumors. Radiographics. 1998;18(1):97–110.

    Article  CAS  PubMed  Google Scholar 

  12. Ginsberg LE. MR imaging of perineural tumor spread. Magn Reson Imaging Clin N Am. 2002;10(3):511–25.

    Article  PubMed  Google Scholar 

  13. Yeh ED. Breast magnetic resonance imaging: current clinical indications. Magn Reson Imaging Clin N Am. 2010;18(2):155–69.

    Article  PubMed  Google Scholar 

  14. Fischer U, Kopka L, Grabbe E. Breast carcinoma: effect of preoperative contrast-enhanced MR imaging on the therapeutic approach. Radiology. 1999;213:881–8.

    Article  CAS  PubMed  Google Scholar 

  15. American College of Radiology. http://www.acr.org/. Accessed 1 Dec 2010.

  16. American Cancer Society, Cancer Facts & Figures 2010. http://www.cancer.org/acs. Accessed 1 Dec 2010.

  17. Antoch G, Stattaus J, Nemat AT, et al. Non-small cell lung cancer: dual-modality PET/CT in preoperative staging. Radiology. 2003;229:526–33.

    Article  PubMed  Google Scholar 

  18. Godelman A, Haramati LB. MR imaging in diagnosis and staging of pulmonary carcinoma. Magn Reson Imaging Clin N Am. 2008;16(2):309–17.

    Article  PubMed  Google Scholar 

  19. Syed IS, Feng D, Harris SR, et al. MR imaging of cardiac masses. Magn Reson Imaging Clin N Am. 2008;16(2):137–64.

    Article  PubMed  Google Scholar 

  20. Hoffmann U, Globits S, Schima W, et al. Usefulness of magnetic resonance imaging of cardiac and paracardiac masses. Am J Cardiol. 2003;92(7):890–5.

    Article  PubMed  Google Scholar 

  21. El-Serag HB, Marrero JA, Rudolph L, Reddy KR. Diagnosis and treatment of hepatocellular carcinoma. Gastroenterology. 2008;134(6):1752–63.

    Article  PubMed  Google Scholar 

  22. Semelka RC, Martin DR, Balci C, Lance T. Focal liver lesions: comparison of dual-phase CT and multisequence multiplanar MR imaging including dynamic gadolinium enhancement. J Magn Reson Imaging. 2001;13(3):397–401.

    Article  CAS  PubMed  Google Scholar 

  23. Barish MA, Yucel EK, Ferrucci JT. Magnetic resonance cholangiopancreatography. N Engl J Med. 1999;341(4):258–64.

    Article  CAS  PubMed  Google Scholar 

  24. Sahni VA, Mortele KJ. Magnetic resonance cholangiopancreatography: current use and future applications. Clin Gastroenterol Hepatol. 2008;6(9):967–77.

    Article  PubMed  Google Scholar 

  25. Federle M, Chezmar J, Rubin D, et al. Efficacy and safety of mangafodipir trisodium (MnDPDP) injection for hepatic MRI in adults: results of the U.S. multicenter phase III clinical trials. Efficacy of early imaging. J Magn Reson Imaging. 2000;12(5):689–701.

    Article  CAS  PubMed  Google Scholar 

  26. Hagspiel KD, Neidl KF, Eichenberger AC, Weder W, Marincek B. Detection of liver metastases: comparison of superparamagnetic iron oxide-enhanced and unenhanced MR imaging at 1.5 T with dynamic CT, intraoperative US, and percutaneous US. Radiology. 1995;196(2):471–8.

    Article  CAS  PubMed  Google Scholar 

  27. Nakayama M, Yamashita Y, Mitsuzaki K, Yi T, Arakawa A, Katahira K, Nakayama Y, Takahashi M. Improved tissue characterization of focal liver lesions with ferumoxide-enhanced T1 and T2-weighted MR imaging. J Magn Reson Imaging. 2000;11(6):647–54.

    Article  CAS  PubMed  Google Scholar 

  28. Reimer P, Rummeny EJ, Daldrup HE, Hesse T, Balzer T, Tombach B, Peters PE. Enhancement characteristics of liver metastases, hepatocellular carcinomas, and hemangiomas with Gd-EOB-DTPA: preliminary results with dynamic MR imaging. Eur Radiol. 1997;7(2):275–80.

    Article  CAS  PubMed  Google Scholar 

  29. Runge VM. A comparison of two MR hepatobiliary gadolinium chelates: Gd-BOPTA and Gd-EOB-DTPA. J Comput Assist Tomogr. 1998;22(4):643–50.

    Article  CAS  PubMed  Google Scholar 

  30. Ji H, Ros PR. Magnetic resonance imaging. Liver-specific contrast agents. Clin Liver Dis. 2002;6(1):73–90.

    Article  PubMed  Google Scholar 

  31. Sauer R, Fietkau R, Wittekind C, German Rectal Cancer Group, et al. Adjuvant vs. neoadjuvant radiochemotherapy for locally advanced rectal cancer: the German trial CAO/ARO/AIO-94. Colorectal Dis. 2003;5:406–15.

    Article  CAS  PubMed  Google Scholar 

  32. Tatli S, Mortele KJ, Breen EL, Bleday R, Silverman SG. Local staging of rectal cancer using combined pelvic phased-array and endorectal coil MRI. J Magn Reson Imaging. 2006;23(4):534–40.

    Article  PubMed  Google Scholar 

  33. Eisner BH, Kurtz MP, Harisinghani MG. Evolving role of magnetic resonance imaging in renal cancer imaging. J Endourol. 2010;24(5):707–11.

    Article  PubMed  Google Scholar 

  34. Silverman SG, Israel GM, Herts BR, Richie JP. Management of the incidental renal mass. Radiology. 2008;249(1):16–31.

    Article  PubMed  Google Scholar 

  35. Jacobs BL, Lee CT, Montie JE. Bladder cancer in 2010: how far have we come? CA Cancer J Clin. 2010;60(4):244–72.

    Article  PubMed  Google Scholar 

  36. Silverman SG, Leyendecker JR, Amis Jr ES. What is the current role of CT urography and MR urography in the evaluation of the urinary tract? Radiology. 2009;250(2):309–23.

    Article  PubMed  Google Scholar 

  37. Setty BN, Holalkere NS, Sahani DV, Uppot RN, Harisinghani M, Blake MA. State-of-the-art cross-sectional imaging in bladder cancer. Curr Probl Diagn Radiol. 2007;36(2):83–96.

    Article  PubMed  Google Scholar 

  38. Tekes A, Kamel I, Imam K, et al. Dynamic MRI of bladder cancer: evaluation of staging accuracy. AJR Am J Roentgenol. 2005;184(1):121–7.

    Article  PubMed  Google Scholar 

  39. Hussain HK, Korobkin M. MR imaging of the adrenal glands. Magn Reson Imaging Clin N Am. 2004;12(3):515–44.

    Article  PubMed  Google Scholar 

  40. Korobkin M. Overview of imaging/CT. Urol Radiol. 1989;4:221–6.

    Article  Google Scholar 

  41. Mayo-Smith WW, Lee MJ, McNicholas MMJ, Hahn PF, Boland GW, Saini S. Characterization of masses (<5 cm) by use of chemical shift MR imaging Observer performance versus quantitative measure. Am J Roentgenol. 1995;165(1):91–5.

    Article  CAS  Google Scholar 

  42. Outwater EK, Siegelman ES, Radecki PD, Piccoli CW, Mitchell DG. Distinction between benign and malignant adrenal masses: value of T1-weighted chemical-shift MR imaging. AJR Am J Roentgenol. 1995;165(3):579–83.

    Article  CAS  PubMed  Google Scholar 

  43. Hricak H, White S, Vigneron D, et al. Carcinoma of the prostate gland: MR imaging with pelvic phased-array coils versus integrated endorectal–pelvic phased-array coils. Radiology. 1994;193(3):703–9.

    Article  CAS  PubMed  Google Scholar 

  44. Shimofusa R, Fujimoto H, Akamata H, Motoori K, Yamamoto S, Ueda T, Ito H. Diffusion-weighted imaging of prostate cancer. J Comput Assist Tomogr. 2005;29(2):149–53.

    Article  PubMed  Google Scholar 

  45. Lim HK, Kim JK, Kim KA, Cho KS. Prostate cancer: apparent diffusion coefficient map with T2-weighted images for detection – a multireader study. Radiology. 2009;250(1):145–51.

    Article  PubMed  Google Scholar 

  46. Jager GJ, Ruijter ET, van de Kaa CA, et al. Dynamic TurboFLASH subtraction technique for contrast-enhanced MR imaging of the prostate: correlation with histopathologic results. Radiology. 1997;203(3):645–52.

    Article  CAS  PubMed  Google Scholar 

  47. Engelbrecht MR, Huisman HJ, Laheij RJ, et al. Discrimination of prostate cancer from normal peripheral zone and central gland tissue by using dynamic contrast-enhanced MR imaging. Radiology. 2003;229(1):248–54.

    Article  PubMed  Google Scholar 

  48. Amant F, Moerman P, Neven P, et al. Endometrial cancer. Lancet. 2005;366(9484):491–505.

    Article  PubMed  Google Scholar 

  49. Frei KA, Kinkel K, Bonél HM, Lu Y, Zaloudek C, Hricak H. Prediction of deep myometrial invasion in patients with endometrial cancer: clinical utility of contrast-enhanced MR imaging-a meta-analysis and Bayesian analysis. Radiology. 2000;216(2):444–9.

    Article  CAS  PubMed  Google Scholar 

  50. Hricak H, Gatsonis C, Chi DS, American College of Radiology Imaging Network 6651, Gynecologic Oncology Group 183, et al. Role of imaging in pretreatment evaluation of early invasive cervical cancer: results of the intergroup study American College of Radiology Imaging Network 6651-Gynecologic Oncology Group 183. J Clin Oncol. 2005;23(36):9329–37.

    Article  PubMed  Google Scholar 

  51. Hricak H, Gatsonis C, Coakley FV, et al. Early invasive cervical cancer: CT and MR imaging in preoperative evaluation – ACRIN/GOG comparative study of diagnostic performance and interobserver variability. Radiology. 2007;245(2):491–8.

    Article  PubMed  Google Scholar 

  52. Rieber A, Nüssle K, Stöhr I, et al. Preoperative diagnosis of ovarian tumors with MR imaging: comparison with transvaginal sonography, positron emission tomography, and histologic findings. AJR Am J Roentgenol. 2001;177(1):123–9.

    Article  CAS  PubMed  Google Scholar 

  53. Hricak H, Chen M, Coakley FV, et al. Complex adnexal masses: detection and characterization with MR imaging–multivariate analysis. Radiology. 2000;214(1):39–46.

    Article  CAS  PubMed  Google Scholar 

  54. Ma LD. Magnetic resonance imaging of musculoskeletal tumors: skeletal and soft tissue masses. Curr Probl Diagn Radiol. 1999;28(2):29–62.

    Article  CAS  PubMed  Google Scholar 

  55. Alyas F, James SL, Davies AM, Saifuddin A. The role of MR imaging in the diagnostic characterisation of appendicular bone tumours and tumour-like conditions. Eur Radiol. 2007;17(10):2675–86.

    Article  CAS  PubMed  Google Scholar 

  56. Wootton-Gorges SL. MR imaging of primary bone tumors and tumor-like conditions in children. Magn Reson Imaging Clin N Am. 2009;17(3):469–87.

    Article  PubMed  Google Scholar 

  57. Hagspiel KD, Kandarpa K, Jolesz FA. Interventional MR imaging. J Vasc Interv Radiol. 1997;8:745–58.

    Article  CAS  PubMed  Google Scholar 

  58. McDannold NJ, Jolesz FA. Magnetic resonance image-guided thermal ablations. Top Magn Reson Imaging. 2000;11:191–202.

    Article  CAS  PubMed  Google Scholar 

  59. Hynynen K, Kettenbach J, Kacher DF, et al. Interventional and intraoperative magnetic resonance imaging. Annu Rev Biomed Eng. 2000;2:661–90.

    Article  Google Scholar 

  60. Lu DS, Lee H, Farahani K, et al. Biopsy of hepatic dome lesions: semi-real-time coronal MR guidance technique. AJR Am J Roentgenol. 1997;168:737–9.

    Article  CAS  PubMed  Google Scholar 

  61. Silverman SG, Tuncali K, Morrison PR. MR Imaging-guided percutaneous tumor ablation. Acad Radiol. 2005;12:1100–19.

    Article  PubMed  Google Scholar 

  62. Morrison PR, Silverman SG, Tuncali K, Tatli S. MRI-guided cryotherapy. J Magn Reson Imaging. 2008;27(2):410–20.

    Article  PubMed  Google Scholar 

  63. Tempany CM, Stewart EA, McDannold N, Quade BJ, Jolesz FA, Hynynen K. MR imaging-guided focused ultrasound surgery of uterine leiomyomas: a feasibility study. Radiology. 2003;226(3):897–905.

    Article  PubMed  Google Scholar 

  64. Tuncali K, Morrison PR, Tatli S, Silverman SG. MRI-guided percutaneous cryoablation of renal tumors: use of external manual displacement of adjacent bowel loops. Eur J Radiol. 2006;59(2):198–202.

    Article  PubMed  Google Scholar 

  65. Silverman SG, Jolesz FA, Newman RW, et al. Design and implementation of an interventional MR imaging suite. AJR Am J Roentgenol. 1997;168:1465–71.

    Article  CAS  PubMed  Google Scholar 

  66. Silverman SG, Collick BD, Figueira MR, et al. Interactive MR-guided biopsy in an open-configuration MR imaging system. Radiology. 1995;197:175–81.

    Article  CAS  PubMed  Google Scholar 

  67. Wallis F, Gilbert FJ. Magnetic resonance imaging in oncology: an overview. J R Coll Surg Edinb. 1999;44(2):117–25.

    CAS  PubMed  Google Scholar 

  68. Salomonowitz E. MR imaging-guided biopsy and therapeutic intervention in a closed-configuration magnet: single-center series of 361 punctures. AJR Am J Roentgenol. 2001;177:159–63.

    Article  CAS  PubMed  Google Scholar 

  69. Solomon SB, Silverman SG. Imaging in interventional oncology. Radiology. 2010;257(3):624–40.

    Article  PubMed  Google Scholar 

  70. Fenchel S, Boll DT, Lewin JS. Intraoperative MR imaging. Magn Reson Imaging Clin N Am. 2003;11(3):431–47.

    Article  PubMed  Google Scholar 

  71. Johnston T, Moser R, Moeller K, Moriarty TM. Intraoperative MRI: safety. Neurosurg Clin N Am. 2009;20(2):147–53.

    Article  PubMed  Google Scholar 

  72. Jolesz FA, Morrison PR, Koran SJ, et al. Compatible instrumentation for intraoperative MRI: expanding resources. J Magn Reson Imaging. 1998;8:8–11.

    Article  CAS  PubMed  Google Scholar 

  73. Keeler EK, Casey FX, Engels H, et al. Accessory equipment considerations with respect to MRI compatibility. J Magn Reson Imaging. 1998;8:12–8.

    Article  CAS  PubMed  Google Scholar 

  74. Bedrosian I, Schlencker J, Spitz FR, et al. Magnetic resonance imaging-guided biopsy of mammographically and clinically occult breast lesions. Ann Surg Oncol. 2002;9(5):457–61.

    Article  PubMed  Google Scholar 

  75. Liberman L, Bracero N, Morris E, Thornton C, Dershaw DD. MRI-guided 9-gauge vacuum-assisted breast biopsy: initial clinical experience. AJR Am J Roentgenol. 2005;185(1):183–93.

    Article  PubMed  Google Scholar 

  76. Kuhl CK, Morakkabati N, Leutner CC, et al. MR imaging–guided large-core (14-gauge) needle biopsy of small lesions visible at breast MR imaging alone. Radiology. 2001;220:31–9.

    Article  CAS  PubMed  Google Scholar 

  77. Perlet C, Heywang-Kobrunner SH, Heinig A, et al. Magnetic resonance-guided, vacuum-assisted breast biopsy: results from a European multicenter study of 538 lesions. Cancer. 2006;106:982–90.

    Article  PubMed  Google Scholar 

  78. Hata N, Jinzaki M, Kacher D, et al. MR imaging-guided prostate biopsy with surgical navigation software: device validation and feasibility. Radiology. 2001;220(1):263–8.

    Article  CAS  PubMed  Google Scholar 

  79. Cormack RA, D’Amico AV, Hata N, Silverman S, Weinstein M, Tempany CM. Feasibility of transperineal prostate biopsy under interventional magnetic resonance guidance. Urology. 2000;56(4):663–4.

    Article  CAS  PubMed  Google Scholar 

  80. D’Amico AV, Tempany CM, Cormack R, et al. Transperineal magnetic resonance image guided prostate biopsy. J Urol. 2000;164:385–7.

    Article  PubMed  Google Scholar 

  81. Lichy MP, Anastasiadis AG, Aschoff P, et al. Morphologic, functional, and metabolic magnetic resonance imaging-guided prostate biopsy in a patient with prior negative transrectal ultrasound-guided biopsies and persistently elevated prostate-specific antigen levels. Urology. 2007;69(6):1208.e5–8.

    Article  Google Scholar 

  82. Buchanan CL, Morris EA, Dorn PL, et al. Utility of breast magnetic resonance imaging in patients with occult primary breast cancer. Ann Surg Oncol. 2005;12:1045–53.

    Article  PubMed  Google Scholar 

  83. Eby PR, Lehman C. MRI-guided breast interventions. Semin Ultrasound CT MR. 2006;27:339–50.

    Article  PubMed  Google Scholar 

  84. Meeuwis C, Peters NH, Mali WP, et al. Targeting difficult accessible breast lesions: MRI-guided needle localization using a freehand technique in a 3.0 T closed bore magnet. Eur J Radiol. 2007;62:283–8.

    Article  CAS  PubMed  Google Scholar 

  85. Bloom S, Morrow M. A clinical oncologic perspective on breast magnetic resonance imaging. Magn Reson Imaging Clin N Am. 2010;18(2):277–94.

    Article  PubMed  Google Scholar 

  86. Philpotts LE. MR intervention: indications, technique, correlation and histologic. Magn Reson Imaging Clin N Am. 2010;18(2):323–32.

    Article  PubMed  Google Scholar 

  87. Ellis JH, Tempany C, Sarin MS, Gatsonis C, Rifkin MD, McNeil BJ. MR imaging and sonography of early prostatic cancer: pathologic and imaging features that influence identification and diagnosis. AJR Am J Roentgenol. 1994;162(4):865–72.

    Article  CAS  PubMed  Google Scholar 

  88. Haker SJ, Mulkern RV, Roebuck JR, Barnes AS, Dimaio S, Hata N, Tempany CM. Magnetic resonance-guided prostate interventions. Top Magn Reson Imaging. 2005;16(5):355–68.

    Article  PubMed  Google Scholar 

  89. Zangos S, Herzog C, Eichler K, et al. MR-compatible assistance system for punction in a high-field system: device and feasibility of transgluteal biopsies of the prostate gland. Eur Radiol. 2007;17:1118–24.

    Article  PubMed  Google Scholar 

  90. Barnes AS, Haker SJ, Mulkern RV, et al. Magnetic resonance spectroscopy-guided transperineal prostate biopsy and brachytherapy for recurrent prostate cancer. Urology. 2005;66:1319.

    PubMed  Google Scholar 

  91. Susil RC, Menard C, Krieger A, et al. Transrectal prostate biopsy and fiducial marker placement in a standard 1.5 T magnetic resonance imaging scanner. J Urol. 2006;175:113–20.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Fennessy FM, Tuncali K, Morrison PR, Tempany CM. MR imaging-guided interventions in the genitourinary tract: an evolving concept. Magn Reson Imaging Clin N Am. 2010;18(1):11–28.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Zhang Q, Chung YC, Lewin JS, Duerk JL. A method for simultaneous RF ablation and MRI. J Magn Reson Imaging. 1998;8(1):110–14.

    Article  CAS  PubMed  Google Scholar 

  94. Silverman SG, Tuncali K, Adams DF, et al. MR imaging-guided percutaneous cryotherapy of liver tumors: initial experience. Radiology. 2000;217:657–64.

    Article  CAS  PubMed  Google Scholar 

  95. Silverman SG, Tuncali K, vanSonnenberg E, et al. Renal tumors: MR imaging-guided percutaneous cryotherapy – initial experience in 23 patients. Radiology. 2005;236:716–24.

    Article  PubMed  Google Scholar 

  96. Han KR, Cohen JK, Miller RJ, et al. Treatment of organ confined prostate cancer with third generation cryosurgery: preliminary multicenter experience. J Urol. 2003;170:1126–30.

    Article  PubMed  Google Scholar 

  97. Nurko J, Mabry CD, Whitworth P, et al. Interim results from the FibroAdenoma Cryoablation Treatment Registry. Am J Surg. 2005;190:647–51.

    Article  PubMed  Google Scholar 

  98. Tuncali K, Morrison PR, Winalski CS, et al. MRI-guided percutaneous cryotherapy for soft-tissue and bone metastases: initial experience. AJR Am J Roentgenol. 2007;189:232–9.

    Article  PubMed  Google Scholar 

  99. Sakuhara Y, Shimizu T, Kodama Y, et al. Magnetic resonance-guided percutaneous cryoablation of uterine fibroids: early clinical experiences. Cardiovasc Intervent Radiol. 2006;29:552–8.

    Article  PubMed  Google Scholar 

  100. Cline HE, Schenck JF, Hynynen K, et al. MR-guided focused ultrasound surgery. J Comput Assist Tomogr. 1992;16:956–65.

    Article  CAS  PubMed  Google Scholar 

  101. Cline HE, Hynynen K, Hardy CJ, et al. MR temperature mapping of focused ultrasound surgery. Magn Reson Med. 1994;31:628–36.

    Article  CAS  PubMed  Google Scholar 

  102. Tempany CM, Stewart EA, McDannold N, et al. MR imaging-guided focused ultrasound surgery of uterine leiomyomas: a feasibility study. Radiology. 2003;226:897–905.

    Article  PubMed  Google Scholar 

  103. Mulkern RV, Panych LP, McDannold NJ, et al. Tissue temperature monitoring with multiple gradient-echo imaging sequences. J Magn Reson Imaging. 1998;8:493–502.

    Article  CAS  PubMed  Google Scholar 

  104. Kuroda K, Oshio K, Chung AH, et al. Temperature mapping using the water proton chemical shift: a chemical shift selective phase mapping method. Magn Reson Med. 1997;38:845–51.

    Article  CAS  PubMed  Google Scholar 

  105. Jolesz FA, Hynynen K, McDannold N, et al. MR imaging-controlled focused ultrasound ablation: a noninvasive image-guided surgery. Magn Reson Imaging Clin N Am. 2005;13:545–60.

    Article  PubMed  Google Scholar 

  106. Hynynen K, Pomeroy O, Smith DN, et al. MR imaging-guided focused ultrasound surgery of fibroadenomas in the breast: a feasibility study. Radiology. 2001;219:176–85.

    Article  CAS  PubMed  Google Scholar 

  107. Zippel DB, Papa MZ. The use of MR imaging guided focused ultrasound in breast cancer patients; a preliminary phase one study and review. Breast Cancer. 2005;12:32–8.

    Article  PubMed  Google Scholar 

  108. Fennessy FM, Tempany CM, McDannold NJ, et al. Uterine leiomyomas: MR imaging-guided focused ultrasound surgery – results of different treatment protocols. Radiology. 2007;243:885–93.

    Article  PubMed  Google Scholar 

  109. Catane R, Beck A, Inbar Y, Rabin T, Shabshin N, Hengst S, Pfeffer RM, Hanannel A, Dogadkin O, Liberman B, Kopelman D. MR-guided focused ultrasound surgery (MRgFUS) for the palliation of pain in patients with bone metastases – preliminary clinical experience. Ann Oncol. 2007;18(1):163–7.

    Article  CAS  PubMed  Google Scholar 

  110. Gianfelice D, Gupta C, Kucharczyk W, Bret P, Havill D, Clemons M. Palliative treatment of painful bone metastases with MR imaging – guided focused ultrasound. Radiology. 2008;249(1):355–63.

    Article  PubMed  Google Scholar 

  111. Watkin NA, Morris SB, Rivens IH, et al. High-intensity focused ultrasound ablation of the kidney in a large animal model. J Endourol. 1997;11:191–6.

    Article  CAS  PubMed  Google Scholar 

  112. Kopelman D, Inbar Y, Hanannel A, et al. Magnetic resonance-guided focused ultrasound surgery (MRgFUS): ablation of liver tissue in a porcine model. Eur J Radiol. 2006;59:157–62.

    Article  PubMed  Google Scholar 

  113. McDannold N, Moss M, Killiany R, et al. MRI-guided focused ultrasound surgery in the brain: tests in a primate model. Magn Reson Med. 2003;49:1188–91.

    Article  PubMed  Google Scholar 

  114. Nag S, Cardenes H, Chang S, Image-Guided Brachytherapy Working Group, et al. Proposed guidelines for image-based intracavitary brachytherapy for cervical carcinoma: report from Image-Guided Brachytherapy Working Group. Int J Radiat Oncol Biol Phys. 2004;60(4):1160–72.

    Article  PubMed  Google Scholar 

  115. Cormack RA. Quality assurance issues for computed tomography-, ultrasound-, and magnetic resonance imaging-guided brachytherapy. Int J Radiat Oncol Biol Phys. 2008;71(1 Suppl):S136–41.

    Article  PubMed  Google Scholar 

  116. Stokes SH. Comparison of biochemical disease-free survival of patients with localized carcinoma of the prostate undergoing radical prostatectomy, transperineal ultrasound-guided radioactive seed implantation, or definitive external beam irradiation. Int J Radiat Oncol Biol Phys. 2000;47:129–36.

    Article  CAS  PubMed  Google Scholar 

  117. Pfeiffer D, Sutlief S, Feng W, Pierce HM, Kofler J. AAPM Task Group 128: quality assurance tests for prostate brachytherapy ultrasound systems. Med Phys. 2008;35(12):5471–89.

    Article  PubMed  Google Scholar 

  118. D’amico AV, Tempany CM, Schultz D, et al. Comparing PSA outcome after radical prostatectomy or magnetic resonance imaging-guided partial prostatic irradiation in select patients with clinically localized adenocarcinoma of the prostate. Urology. 2003;62:1063–7.

    Article  PubMed  Google Scholar 

  119. Talcott JA, Clark JA, Stark PC, et al. Long-term treatment related complications of brachytherapy for early prostate cancer: a survey of patients previously treated. J Urol. 2001;166:494–9.

    Article  CAS  PubMed  Google Scholar 

  120. Hurwitz MD, Cormack R, Tempany CM, et al. Three-dimensional real-time magnetic resonance-guided interstitial prostate brachytherapy optimizes radiation dose distribution resulting in a favorable acute side-effect profile in patients with clinically localized prostate cancer. Tech Urol. 2000;6:89–94.

    CAS  PubMed  Google Scholar 

  121. D’Amico AV, Cormack RA, Tempany CM. MRI-guided diagnosis and treatment of prostate cancer. N Engl J Med. 2001;344:776–7.

    Article  PubMed  Google Scholar 

  122. Cormack RA, Kooy H, Tempany CM, et al. A clinical method for real-time dosimetric guidance of transperineal 125I prostate implants using interventional magnetic resonance imaging. Int J Radiat Oncol Biol Phys. 2000;46:207–14.

    Article  CAS  PubMed  Google Scholar 

  123. D’Amico AV, Cormack R, Tempany CM, et al. Real-time magnetic resonance image-guided interstitial brachytherapy in the treatment of select patients with clinically localized prostate cancer. Int J Radiat Oncol Biol Phys. 1998;42:507–15.

    Article  PubMed  Google Scholar 

  124. Mislow JM, Golby AJ, Black PM. Origins of intraoperative MRI. Neurosurg Clin N Am. 2009;20(2):137–46.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Black PM, Moriarty T, Alexander 3rd E, et al. Development and implementation of intraoperative magnetic resonance imaging and its neurosurgical applications. Neurosurgery. 1997;41(4):831–42.

    Article  CAS  PubMed  Google Scholar 

  126. Schwartz RB, Hsu L, Wong TZ, et al. Intraoperative MR imaging guidance for intracranial neurosurgery: experience with the first 200 cases. Radiology. 1999;211(2):477–88.

    Article  CAS  PubMed  Google Scholar 

  127. Pergolizzi Jr RS, Nabavi A, Schwartz RB, et al. Intra-operative MR guidance during trans-sphenoidal pituitary resection: preliminary results. J Magn Reson Imaging. 2001;13(1):136–41.

    Article  PubMed  Google Scholar 

  128. Bootz F, Schulz T, Weber A, Scheffler B, Keiner S. The use of open MRI in otorhinolaryngology: initial experience. Comput Aided Surg. 2001;6(5):297–304.

    Article  CAS  PubMed  Google Scholar 

  129. Schulz T, Schneider JP, Bootz F, et al. Transnasal and transsphenoidal MRI-guided biopsies of petroclival tumors. J Magn Reson Imaging. 2001;13(1):3–11.

    Article  CAS  PubMed  Google Scholar 

  130. Dort JC, Sutherland GR. Intraoperative magnetic resonance imaging for skull base surgery. Laryngoscope. 2001;111(9):1570–5.

    Article  CAS  PubMed  Google Scholar 

  131. Fried MP, Topulos G, Hsu L, et al. Endoscopic sinus surgery with magnetic resonance imaging guidance: initial patient experience. Otolaryngol Head Neck Surg. 1998;119(4):374–80.

    Article  CAS  PubMed  Google Scholar 

  132. Gould SW, Lamb G, Lomax D, Gedroyc W, Darzi A. Interventional MR-guided excisional biopsy of breast lesions. J Magn Reson Imaging. 1998;8(1):26–30.

    Article  CAS  PubMed  Google Scholar 

  133. Therasse P, Arbuck SG, Eisenhauer EA, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 2000;92(3):205–16.

    Article  CAS  Google Scholar 

  134. Klaeser B, Mueller MD, Schmid RA, Guevara C, Krause T, Wiskirchen J. PET-CT-guided interventions in the management of FDG-positive lesions in patients suffering from solid malignancies: initial experience. Eur Radiol. 2009;19:1780–5.

    Article  PubMed  Google Scholar 

  135. Selzner M, Hany TF, Wildbrett P, McCormack L, Kadry Z, Clavien PA. Does the novel PET/CT imaging modality impact on the treatment of patients with metastatic colorectal cancer of the liver? Ann Surg. 2004;240(6):1027–34.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Tatli S, Gerbaudo VH, Mamede M, Tuncali K, Shyn PB, Silverman SG. Abdominal masses sampled at PET/CT-guided percutaneous biopsy: initial experience with registration of prior PET/CT images. Radiology. 2010;256(1):305–11.

    Article  PubMed  Google Scholar 

  137. Soher BJ, Dale BM, Merkle EM. A review of MR physics: 3 T versus 1.5 T. Magn Reson Imaging Clin N Am. 2007;15(3):277–90.

    Article  PubMed  Google Scholar 

  138. DeLano MC, Fisher C. 3 T MR imaging of the brain. Magn Reson Imaging Clin N Am. 2006;14(1):77–88.

    Article  PubMed  Google Scholar 

  139. Nagae-Poetscher LM, Jiang H, Wakana S, Golay X, van Zijl PC, Mori S. High-resolution diffusion tensor imaging of the brain stem at 3 T. AJNR Am J Neuroradiol. 2004;25(8):1325–30.

    PubMed  Google Scholar 

  140. Ramnath RR. 3 T MR imaging of the musculoskeletal system (Part II): clinical applications. Magn Reson Imaging Clin N Am. 2006;14(1):41–62.

    Article  PubMed  Google Scholar 

  141. Sosna J, Pedrosa I, Dewolf WC, Mahallati H, Lenkinski RE, Rofsky NM. MR imaging of the prostate at 3 Tesla: comparison of an external phased-array coil to imaging with an endorectal coil at 1.5 Tesla. Acad Radiol. 2004;11(8):857–62.

    Article  PubMed  Google Scholar 

  142. Bammer R, Schoenberg SO. Current concepts and advances in clinical parallel magnetic resonance imaging. Top Magn Reson Imaging. 2004;15(3):129–58.

    Article  PubMed  Google Scholar 

  143. Glockner JF, Hu HH, Stanley DW, Angelos L, King K. Parallel MR imaging: a user’s guide. Radiographics. 2005;25(5):1279–97.

    Article  PubMed  Google Scholar 

  144. Padhani AR. Dynamic contrast-enhanced MRI in clinical oncology: current status and future directions. J Magn Reson Imaging. 2002;16(4):407–22.

    Article  PubMed  Google Scholar 

  145. Kwee TC, Takahara T, Klomp DW, Luijten PR. Cancer imaging: novel concepts in clinical magnetic resonance imaging. J Intern Med. 2010;268(2):120–32.

    Article  CAS  PubMed  Google Scholar 

  146. Kuhl CK, Mielcareck P, Klaschik S, et al. Dynamic breast MR imaging; a signal intensity time course data useful for differential diagnosis of enhancing lesions? Radiology. 1999;211:101–10.

    Article  CAS  PubMed  Google Scholar 

  147. Bloch BN, Furman-Haran E, Helbich TH, et al. Prostate cancer: accurate determination of extracapsular extension with high-spatial-resolution dynamic contrast-enhanced and T2-weighted MR imaging–initial results. Radiology. 2007;245(1):176–85.

    Article  PubMed  Google Scholar 

  148. Thomassin-Naggara I, Daraï E, Cuenod CA, Rouzier R, Callard P, Bazot M. Dynamic contrast-enhanced magnetic resonance imaging: a useful tool for characterizing ovarian epithelial tumors. J Magn Reson Imaging. 2008;28(1):111–20.

    Article  PubMed  Google Scholar 

  149. Schaefer PW, Grant PE, Gonzalez RG. Diffusion-weighted MR imaging of the brain. Radiology. 2000;217(2):331–45.

    Article  CAS  PubMed  Google Scholar 

  150. Kono K, Inoue Y, Nakayama K, et al. The role of diffusion-weighted imaging in patients with brain tumors. AJNR Am J Neuroradiol. 2001;22:1081–8.

    CAS  PubMed  Google Scholar 

  151. Stadnik TW, Chaskis C, Michotte A, et al. Diffusion-weighted MR imaging of intracerebral masses: comparison with conventional MR imaging and histologic findings. AJNR Am J Neuroradiol. 2001;22:969–76.

    CAS  PubMed  Google Scholar 

  152. Provenzale JM, Mukundan S, Barboriak DP. Diffusion-weighted and perfusion MR imaging for brain tumor characterization and assessment of treatment response. Radiology. 2006;239(3):632–49.

    Article  PubMed  Google Scholar 

  153. Low RN, Gurney J. Diffusion-weighted MRI (DWI) in the oncology patient: value of breathhold DWI compared to unenhanced and gadolinium-enhanced MRI. J Magn Reson Imaging. 2007;25(4):848–58.

    Article  PubMed  Google Scholar 

  154. Low RN. Diffusion-weighted MR, imaging for whole body metastatic disease and lymphadenopathy. Magn Reson Imaging Clin N Am. 2009;17(2):245–61.

    Article  PubMed  Google Scholar 

  155. Takahara T, Imai Y, Yamashita T, Yasuda S, Nasu S, Van Cauteren M. Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med. 2004;22(4):275–82.

    PubMed  Google Scholar 

  156. Komori T, Narabayashi I, Matsumura K, et al. 2-[Fluorine-18]-fluoro-2-deoxy-d-glucose positron emission tomography/computed tomography versus whole-body diffusion-weighted MRI for detection of malignant lesions: initial experience. Ann Nucl Med. 2007;21(4):209–15.

    Article  PubMed  Google Scholar 

  157. Harisinghani MG, Saini S, Weissleder R, et al. MR lymphangiography using ultrasmall superparamagnetic iron oxide in patients with primary abdominal and pelvic malignancies: radiographic-pathologic correlation. AJR Am J Roentgenol. 1999;172(5):1347–51.

    Article  CAS  PubMed  Google Scholar 

  158. Schick F. Whole-body MRI, at high field: technical limits and clinical potential. Eur Radiol. 2005;15(5):946–59.

    Article  PubMed  Google Scholar 

  159. Lauenstein TC, Goehde SC, Herborn CU, et al. Whole-body MR imaging: evaluation of patients for metastases. Radiology. 2004;233(1):139–48.

    Article  PubMed  Google Scholar 

  160. Antoch G, Vogt FM, Freudenberg LS, et al. Whole-body dual-modality PET/CT and whole-body MRI for tumor staging in oncology. J Am Med Assoc. 2003;290(24):3199–206.

    Article  CAS  Google Scholar 

  161. Raylman RR, Majewski S, Velan SS, et al. Simultaneous acquisition of magnetic resonance spectroscopy (MRS) data and positron emission tomography (PET) images with a prototype MR-compatible, small animal PET imager. J Magn Reson. 2007;186(2):305–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Servet Tatli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Tatli, S., Silverman, S.G. (2013). Imaging of Interventional Therapies in Oncology: Magnetic Resonance Imaging. In: Dupuy, D., Fong, Y., McMullen, W. (eds) Image-Guided Cancer Therapy. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0751-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0751-6_17

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-0750-9

  • Online ISBN: 978-1-4419-0751-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics