Advertisement

Nuclear Power Sources for Space Systems

  • N. E. Kukharkin
  • N. N. Ponomarev-Stepnoi
  • V. A. Usov
Reference work entry

Abstract

This chapter contains the information about nuclear power sources for space systems. Reactor nuclear sources are considered that use the energy of heavy nuclei fission generated by controlled chain fission reaction, as well as the isotope ones producing heat due to the energy of nuclei radioactive decay. Power of reactor nuclear sources is determined by the rate of heavy nuclei fission that may be controlled within a wide range from the zero up to the nominal one. Thermal power of isotope sources cannot be controlled. It is determined by the type and quantity of isotopes and decreases in time due to their radioactive decay. Both, in the reactor sources and in the isotope ones, nuclear power is converted into the thermal one that may be consumed for the coolant heating to produce thrust (Nuclear Power Propulsion System, NPPS) or may be converted into electricity (Nuclear Power Source, NPS) dynamically (a turbine generator) or statically (thermoelectric or thermionic converters). Electric power is supplied to the airborne equipment or is used to produce thrust in electric (ionic, plasma) low-thrust engines. A brief description is presented of the different nuclear systems with reactor and isotopic power sources implemented in Russia and the USA. The information is also given about isotopic sources for the ground-based application, mainly for navigation systems.

Keywords

Fuel Assembly Space Vehicle Beryllium Oxide Nuclear Power System Cesium Vapor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Andreev PV, Galkin AYa, Zhabotinsky EE et al (1995) Electrical propulsion units based on Topaz-type thermionic nuclear power systems for information satellite systems. In: Proceedings of the 12th Symposium on space nuclear power systems, Pt. 1, Albuquerque NM, pp 335–339Google Scholar
  2. Bennet G et al (1994) Prelude to the future: A brief of nuclear thermal propulsion in the United States. In: A critical review of space nuclear power and propulsion 1984–1993. AIP Press, New York, pp 221–267Google Scholar
  3. Corliss WR, Harvey DG (1964) Radioisotopic Power Generation, Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  4. Demyanko YuG, Kostylev AM, Fedotov RA (1993) Nazemnaya otrabotka yadernykh raketnykh dvigateley s tverdofaznym reaktorom v SSSR. Raketnaya kosmicheskaya tekhnika. Nauchno-tekhnichesky sbornik, 1(134). Raketnye dvigateli i energeticheskiye ustanovki. Sistemy i sredstva bortovoy energetiki.M.: NIITP, 45–54Google Scholar
  5. Deniskin VP, Dyakov YeK, Nezhevenko LB et al (1993) Rezultaty razrabotki i ispytany TVS aktivnykh zon reaktorov yard. Tezisy doklada 3-y otraslevoy konferentsii “Yadernaya energetika v kosmose. Yadernye raketnye dvigateli.” Podolsk, 27–32Google Scholar
  6. Dyakov YeK, Podladchikov YuN, Popov YeB, et al (1985) Problemy razrabotki TVS yard i dvigatelno-energeticheskikh ustanovok na baze yard. Raketno-kosmicheskaya tekhnika. Nauchno-tekhnichesky sbornik, ser. IV, 1(86):29–40Google Scholar
  7. Gryaznov GM (1999) Kosmicheskye jadernye energeticheskie ustanovki. Yadernoy nauke i tekhnike Rossyi 50 let. Tr. Ubileynoy Konferentsii. Ministerstvo Rossiyskoy Federatsii po atomnoy Energii. Moskva. IzdatGoogle Scholar
  8. Gryaznov GM, Zhabotinsky YeE, Zrodnikov AV et al (1989) Termoemissionnye reaktory-preobrazovateli kosmicheskikh yaeu. Atomnaya Energiya 66(6):374–377Google Scholar
  9. Gverdtsiteli IG, Kukharkin NE, Ponomarev-Stepnoy NN, Usov VA (1969) Osnovnye rezultaty 15000-chasovykh ispytany vysokotemperaturnogo reaktora-preobrazovatelya “Romashka” – V sb.: Doklady 4-y Amerikanskoy konferentsii po preobrazovaniyu energii. WashingtonGoogle Scholar
  10. Johnson RA, Morgan WT, Rocklin SR (1966) SNAP-10A - First reactor in space. SAE J 74(3):92–96Google Scholar
  11. Kolganov VD, Smetannikov VP, Ulasevich VK et al (1993) Mesto reaktora IVG1 v perspektivnoy programme sozdaniya yard dlya Marsianskoy ekspeditsii. Tezisy doklada 3-y otraslevoy konferentsii “Yadernaya energetika v kosmose. Yadernye raketnye dvigateli. Podolsk, pp 427–436Google Scholar
  12. Kukharkin NE, Nechayev YuA et al (1999) Energoresursnye kharakteristiki odnoelemetnykh EGK, proshedshikh yaderno-energeticheskiye ispytaniya v sostave reaktornykh blokov ustanovki “Topaz-2.” Tezisy doklada 5-y Mezhdunarodnoy konferentsii “Yadernaya energetika v kosmose.” Podolsk. p 44Google Scholar
  13. Kukharkin NE, Ponomarev-Stepnoy NN, Usov VA (2008) Kosmicheskaya yadernaya energetika (yadernye reaktory s termoelektricheskim i termoemissionnym preobrazovaniyem –“Romashka” i “Enisey”). Moskva, IzdatGoogle Scholar
  14. Kuznetsov VA, Gryaznov GM, Artyukhov GYa et al (1974) Razrabotka i sozdaniye termoemissionnykh yaeu “Topaz”. Atomnaya Energiya 36(6):450–457Google Scholar
  15. Mashinostroyenie Entsiklopediya. Tom IV-25. Mashinostroyenie yadernoy tekhniki. Kniga 2. Kosmicheskiye reaktornye ustanivkiGoogle Scholar
  16. Millionshchikov MD, Kukharkin NE, Ponomarev-Stepnoy NN, Usov VA, et al (1964) Vysokotemperaturny reaktor - preobrazovatel “Romashka” – Atomnaya energiya, 17(5):329–336Google Scholar
  17. Nickitin VP, Ogloblin BG, Sinkevich VG (1992) Special features and results of the TOPAZ-2 nuclear power system tests and with electric heating. 9th Symposium on space nuclear power systems, Pt. 1, Albuquerque NM, pp 41–46Google Scholar
  18. Nikitin VP, Ogloblin BG, Sokolov YeN, Ponomarev-Stepnoy NN, Kukharkin NE, Usov VA, Nikolayev YuV (2000) Kosmicheskaya yadernaya energeticheskaya ustanovka “Enisey.” Atomnaya energiya, 88(2):95–108Google Scholar
  19. Ponomarev-Stepnoi NN, Usov VA (1995) Conceptual design of the bimodal nuclear power system based on the ”Romashka“ type reactor the thermionic energy conversion system. In: 12th Symposium on space nuclear power systems. USA, Albuquerque, 1995Google Scholar
  20. Ponomarev-Stepnoi NN, Usov VA et al (1995) Conceptual design of the bimodal nuclear power and propulsion system based on the ”Topaz-2“ reactor with the modernized single-Cell TFE. In: 12th Symposium on space nuclear power systems, USA, Albuquerque, 1995Google Scholar
  21. Ponomarev-Stepnoi NN, Usov VA et al (1996) Bimodal space nuclear power system with fast reactor and Topaz-2 type single cell TFE. In: 13th symposium on nuclear power and propulsion, Pt. 3, 1077–1081Google Scholar
  22. Ponomarev-Stepnoy NN, Talyzin VM et al (1999) Raboty po sozdaniyu otechestvennogo yard. Atomnaya energiya, 86(4):296Google Scholar
  23. Ponomarev-Stepnoy NN, Talyzin VM, Usov VA (2000) Rossyskiye kosmicheskiye yadernye energeticheskiye ustanovki i yadernye raketnye dvigateli. – Zhurnal Nuclear News, dekabrGoogle Scholar
  24. Ponomarev-Stepnoy NN, Kukharkin NE, Usov VA, Talyzin VM, Pavshuk VA (2003) Rossyskiye kosmicheskiye yadernye energeticheskiye ustanovki i yadernye raketnye dvigateli. Perspektivy ispolzovaniya energodvigatelnykh ustanovok i tekhnologii ikh sozdaniya dlya mirnykh primeneny. – V sb.: Doklady 10-go mezhdunarodnogo seminara po kosmicheskim dvigatelyam 10-JWC. Italiya, g.LerikaGoogle Scholar
  25. Ponomarev-Stepnoy NN, Pavshuk VA, Usov VA (2005) Rossysky opyt razrabotki yadernykh energoustanovok i yadernykh raketnykh dvigateley pervogo pokoleniya – kak osnova sozdaniya perspektivnykh energodvigatelnykh kompleksov dlya mirnykh issledovany blizhnego i dalnego kosmosa. – V sb.: Doklady mezhdunarodnogo astronavticheskogo kongressa. Japan, Fukuoka, October 2005, 47/S35, 13Google Scholar
  26. Ponomarev-Syepnoi NN, Usov VA et al (1993) Space nuclear power system based on thermionic reactor with single-cell TFEs. In: 10th Symposium on space nuclear power and propulsion, Pt. 3Google Scholar
  27. Pupko VYa, Vizgalov AV et al (1991) Fast neutron thermionic-converters for high-power space nuclear systems. In: 8th symposium on space nuclear power and propulsion, Pt. 3, pp 657–661Google Scholar
  28. Radioizotopnye istochniki elektricheskoy energii (1978) Pod redaktsiyey G.M. Fradkina. M.: Atomizdat, 304Google Scholar
  29. Schock A et al (1999) Design and analysis of RTGs for CRAF and cassini missions. In: Proceedings of the 8th Symposium on space nuclear power systems, Pt. 2, Albuquerque NM, 938–953Google Scholar
  30. Snyder NW (ed) (1961) Space power systems. Academic Press, New York, LondonGoogle Scholar
  31. Topaz (1995) Topaz International Program. Booz.Allen & Hamilton, Arlington, VAGoogle Scholar
  32. Turi DA, Dzhonson RA et al (1991) Kosmicheskaya radioizotopnaya programma ssha. Perevod s anglyskogo. Otraslevaya yubileynaya konferentsiya “Yadernaya energetika v kosmose”: Tezisy dokladov. Obninsk, Ch.P., 31–52Google Scholar
  33. Wetch JR (1990) History of space nuclear power short course notes. In: 7th Symposium on space nuclear power. Albuquerque, New MexicoGoogle Scholar
  34. Wetch JR, Britt EJ et al (1997) Low-cost space fission power systems utilizing US and former Soviet Union experience and technology. In: 14th symposium on space nuclear power and propulsion, Pt. 3, 1309–1315Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • N. E. Kukharkin
    • 1
  • N. N. Ponomarev-Stepnoi
    • 1
  • V. A. Usov
    • 1
  1. 1.Russian Research Center “Kurchatov Institute”MoscowRussia

Personalised recommendations