Nuclear Fission

Reference work entry


This chapter first gives a survey on the history of the discovery of nuclear fission. It briefly presents the liquid-drop and shell models and their application to the fission process. The most important quantities accessible to experimental determination such as mass yields, nuclear charge distribution, prompt neutron emission, kinetic energy distribution, ternary fragment yields, angular distributions, and properties of fission isomers are presented as well as the instrumentation and techniques used for their measurement. The contribution concentrates on the fundamental aspects of nuclear fission. The practical aspects of nuclear fission are discussed in  Chap. 57 of Vol. 6.


Fission Product Compound Nucleus Fission Fragment Spontaneous Fission Fission Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alexandrov AA, Alexandrova IA, Ermolenko AV, Korjuk YA, Nikulin DS, Pevchev YF, Podshibyakin SL, Pyatkov YV, Sitnikov SI, Slyusarenko AI, Shemetov AN, Shehmametiev RA (1991) Nucl Instr Meth Phys Rev A 303:323Google Scholar
  2. Armbruster P, Quade U, Rudolph K, Clerc H-G, Mutterer M, Pannicke J, Schmitt C, Theobald JP, Engelhardt W, Gönnenwein F, Schrader H (1981) The cold fragmentation of 234U in 233U(nth,f). In: International conference on nuclei far from stability. Helsingor, p 675Google Scholar
  3. Asghar M, Caitucoli F, Leroux B, Perrin P, Barreau G (1981) Nucl Phys A 368:328Google Scholar
  4. Barreau G, Sicre A, Caitucoli F, Asghar M, Doan TP, Leroux B, Martinez G, Benfoughal T (1985) Nucl Phys A 432:411Google Scholar
  5. Bjornholm S (1974) Physica Scripta 10A:110Google Scholar
  6. Bjornholm S, Lynn JE (1980) Rev Mod Phys 52:725Google Scholar
  7. Blons J, Mazur C, Paya D, Ribrag M (1978) Phys Rev Lett 41:1282Google Scholar
  8. Bocquet JP, Brissot R, Faust HR (1988) Nucl Instr Meth Phys Res A 267:466Google Scholar
  9. Bohr N (1936) Nature 137:351Google Scholar
  10. Bohr N, Wheeler JA (1939) Phys Rev 56:426Google Scholar
  11. Bothe W, Becker H (1930a) Nat Wiss 18:705Google Scholar
  12. Bothe W, Becker H (1930b) Z Physik 66:289Google Scholar
  13. Boucheneb N, Geltenbort P, Asghar M, Barreau G, Doan TP, Gönnenwein F, Leroux B, Oed A, Sicre A (1989) Nucl Phys A 502:261cGoogle Scholar
  14. Bowman HR, Thompson SG, Milton JCD, Swiatecki WJ (1962) Phys Rev 126:2120Google Scholar
  15. Braun A, Preiswerk P, Scherrer P (1937) Nature 140:682Google Scholar
  16. Brosa U, Großmann S, Müller A (1990) Physics Reports 197:167Google Scholar
  17. Butz-Jörgensen C, Knitter H-H, Straede Ch, Hambsch F-J, Vogt RA (1987) Nucl Instr Meth Phys Res A 258:209Google Scholar
  18. Chadwick J (1932a) Proc Royal Soc (London) A136:692Google Scholar
  19. Chadwick J (1932b) Nature 129:312Google Scholar
  20. Clerc H-G, Schmidt K-H, Wohlfarth H, Lang W, Schrader H, PferdekÄmper KE, Jungmann R, Asghar M, Bocquet JP, Siegert G (1975) Nucl Instr Meth 124:607Google Scholar
  21. Coryell CD, Sugarman N (eds) (1951) NNES radiochemical studies: the fission products. McGraw-Hill, New YorkGoogle Scholar
  22. Curie I, Joliot F (1932) C R Acad Sciences, Paris 194:273Google Scholar
  23. Curie I, Savitch P (1938a) C R Acad Sciences, Paris 206:1643Google Scholar
  24. Curie I, Savitch P (1938b) C R Acad Sciences, Paris 206:906Google Scholar
  25. Davi M (1997) Messung von Ausbeuten in der Spaltung von 250Cf   * und 239Np* am Massenseparator Lohengrin. Dissertation, Johannes Gutenberg Universität, MainzGoogle Scholar
  26. Davi M, Denschlag HO, Faust HR, Gönnenwein F, Oberstedt S, Tsekhanovitch I, Wöstheinrich M (1998) Odd-even effects in the fission of odd-Z nuclides. In: Fioni G, Faust H, Oberstedt S, Hambsch FJ (eds) Nuclear fission and fission-product spectroscopy. American Institute of Physics, Woodbury, pp 239–246Google Scholar
  27. De Laeter JR (1988) Mass Spectrom Rev 7:71Google Scholar
  28. Denschlag HO (1986) Nucl Sci Engin 94:337Google Scholar
  29. Denschlag HO (1997) Fission fragment mass charge and energy distributions. In: Poenaru DN, Greiner W (eds) Experimental techniques in nuclear physics. Walter de Gruyter, Berlin, New York, pp 535–582Google Scholar
  30. Derengowski M, Melkonian E (1970) Phys Rev C 2:1554Google Scholar
  31. Dickens JK (1979) Nucl Sci Engin 70:177Google Scholar
  32. Dickens JK, Mcconnell JW (1980) Nucl Sci Engin 73:42Google Scholar
  33. Dickens JK, Mcconnell JW (1981a) Phys Rev C 23:331Google Scholar
  34. Dickens JK, Mcconnell JW (1981b) Phys Rev C 24:192Google Scholar
  35. Dickens JK, Mcconnell JW (1983) Phys Rev C 27:253Google Scholar
  36. Dickens JK, Mcconnell JW, Northcutt KJ (1981) Nucl Sci Engin 77:146Google Scholar
  37. Diiorio G, Wehring BW (1977) Nucl Instr Meth 147:487Google Scholar
  38. Ditz W (1991) Messung von Massen- und Nuklidausbeuten in der stark asymmetrischen Spaltung von 239Pu. Dissertation, Johannes Gutenberg Universität, MainzGoogle Scholar
  39. Engelkemeir DW, Novey TB, Schover DS (1951) Determination of absolute slow-neutron fission yields in 235U. In: Coryell CD, Sugarman N (eds) Radiochemical studies: the fission products. McGraw-Hill, New York, pp 1334–1343Google Scholar
  40. England TR, Rider BF (1994) Fission product yields, Report: LA-UR-94-3106. Los Alamos National Laboratory, Los Alamos, NM.
  41. Flügge S (1939) Nat wiss 23/24:403Google Scholar
  42. Flügge S (1989) How fission was discovered, fifty years with nuclear fission, Gaithersburg, MD. In: Behrens JW, Carlson AD (eds) (American Nuclear Society, La Grange Park, IL) pp 26–29Google Scholar
  43. Fluss MJ, Kaufmann SB, Steinberg EP, Wilins BD (1973) Phys Rev C 7:353Google Scholar
  44. Frenkel JA (1939) Phys Rev 55:987Google Scholar
  45. Friedlander G, Kennedy JW, Macias ES, Miller JM (1981) Nuclear and radiochemistry. Wiley, New YorkGoogle Scholar
  46. Friedrichs T (1998) Untersuchung der neutroneninduzierten Spaltung von 245Cm und 241Pu sowie Bestimmung von Kernmassen mittels β, gamma-Koinzidenzspektroskopie. Dissertation, Universität Braunschweig, BraunschweigGoogle Scholar
  47. Friedrichs T, Faust H, Fioni G, Groß M, Köster U, Münnich F, Oberstedt S (1998) Investigation of mass, charge, and energy of thermal neutron induced fission of 245Cm and 241Pu. In: Fioni G, Faust H, Oberstedt S, Hambsch FJ (eds) Nuclear fission and fission-product spectroscopy. American Institute of Physics (AIP), Woodbury, NY, pp 231–238Google Scholar
  48. Frisch OR (1939) Nature 143:276Google Scholar
  49. Frisch OR (1979) Energy from nuclei. In: What little I remember. University Press, Cambridge, pp 113–119Google Scholar
  50. Fubini A, Blons J, Michaudon A, Paya D (1968) Phys Rev Lett 20:1373Google Scholar
  51. Galy J, Fogelberg B, Storrer F, Mach H (2000) Europ Phys J A 8:331Google Scholar
  52. Gamov G (1928) Z Physik 51:204Google Scholar
  53. Glasstone S (1967) The proton, antiproton, and positron. In: Sourcebook on atomic energy. von Nostrand, Princeton, pp 42–43Google Scholar
  54. Gönnenwein F (1991) Mass, charge, kinetic energy of fission fragments. In: Wagemans C (ed) The nuclear fission process. CRC-Press, Boca Raton, pp 287–473Google Scholar
  55. Grosse AV (1965) Introductory note to paper No. 137. In: Fermi E (ed) Note e Memorie; collected papers. Academia Nazionale dei Cincei/University of Chicago Press, Rome, p 41Google Scholar
  56. Gurney RW, Condon EU (1928) Nature 122:439Google Scholar
  57. Gurney RW, Condon EU (1929) Phys Rev 33:127Google Scholar
  58. Habs D, Metag V, Specht HJ, Ulfert G (1977) Phys Rev Lett 38:387Google Scholar
  59. Hahn O (1962) Vom radiothor zur uranspaltung. Friedr. Vieweg & Sohn, BraunschweigGoogle Scholar
  60. Hahn O, Strassmann F (1939) Nat wiss 27:11Google Scholar
  61. Haxel O, Jensen JHD, Suess HE (1950) Z Physik 128:295Google Scholar
  62. Heeg P, Hoffmann KF, Mutterer M, Theobald JP, WeingÄrtner K, Pannicke J, Gönnenwein F, Barreau G, Leroux B (1983) Nucl Phys A 409:379cGoogle Scholar
  63. Heisenberg W (1927) Z Physik 43:172Google Scholar
  64. Hentzschel R, Faust HR, Denschlag HO, Wilkins BD, Gindler J (1994) Nucl Phys A 571:427Google Scholar
  65. Herrmann G (1990a) Angewandte Chemie 102:469Google Scholar
  66. Herrmann G (1990b) Angew Chem Int Ed 29:481Google Scholar
  67. Herrmann G (1995) Radiochim Acta 70/71:51Google Scholar
  68. Herrmann G, Denschlag HO (1969) Ann Rev Nucl Sci 19:1Google Scholar
  69. Herrmann G, Trautmann N (1982) Ann Rev Nucl Part Sci 32:117Google Scholar
  70. Hoffman DC (1989) Spontaneous fission of the heaviest elements, fifty years with nuclear fission. National Institute of Standards and Technology, Gaithersburg, MD, pp 83–91Google Scholar
  71. Hoffman DC, Lane MR (1995) Radiochim Acta 70/71:135Google Scholar
  72. IAEA (2000) Compilation and evaluation of fission yield nuclear data, Report: IAEA-TECDOC-1168, available through INIS Clearinghouse, IAEA, Vienna, AustriaGoogle Scholar
  73. Jacobsson L, Fogelberg B, Ekström B, Rudstam G (1987) Nucl Instr Meth Phys Res B 26:223Google Scholar
  74. James MF, Mills RW, Weaver DR (1991) A new evaluation of fission product yields and the production of a new library (UKFY2), Parts I to III, Report: AEA-TRS-1015, -1018, -1019, AEA (Atomic Energy Agency), Thermal Reactor Services. Winfrith, Dorchester, UKGoogle Scholar
  75. Jentschke W, Prankl F (1939a) Anz Akad Wiss Wien mathem-naturw Klasse, 1939, 19Google Scholar
  76. Jentschke W, Prankl F (1939b) Nat wiss 27:134Google Scholar
  77. Kirchner R (1992) Nucl Instr Meth Phys Res B 70:186Google Scholar
  78. Knitter H-H, Hambsch F-J, Butz-Jörgensen C (1992) Nucl Phys A 536:221Google Scholar
  79. Kolar W, Böckhoff KH (1968) Final results on the neutron total cross section of 240Pu. In: International conference on neutron cross sections and technology, (National Bureau of Standards, Special Publication No. 299) p 519Google Scholar
  80. Krafft F (1981) Im Schatten der Sensation, Leben und Wirken von Fritz Straßmann. Verlag Chemie, WeinheimGoogle Scholar
  81. Kramish A (1986) The griffin. Houghton Mifflin Company, BostonGoogle Scholar
  82. Krasznahorkay A et al (1998) Phys Rev Lett 80:2073Google Scholar
  83. Lemmerich J (1989) Die Geschichte der Entdeckung der Kernspaltung, Katalog zur Ausstellung in der Technischen Universität Berlin. (Berlin, Technische Universität Berlin, available from Universitätsbibliothek, Abt. Publikationen, ISBN 3 7983 1257 5)Google Scholar
  84. Mariolopoulos G, Hamelin C, Blachot J, Bocquet JP, Brissot R, Crancon J, Nifenecker H, Ristori C (1981) Nucl Phys A 361:213Google Scholar
  85. Mayer MG (1948) Phys Rev 74:235Google Scholar
  86. Mayer MG (1950) Phys Rev 78:16Google Scholar
  87. Mayer-Kuckuck T (1970) Physik der atomkerne. B.G. Teubner, StuttgartGoogle Scholar
  88. Meitner L (1950) Nature 165:561Google Scholar
  89. Meitner L, Frisch OR (1939) Nature 143:239Google Scholar
  90. Meitner L, Hahn O, Strassmann F (1937) Z Physik 106:249Google Scholar
  91. Metag V, Habs D, Specht HJ (1980) Phys Rep 65:1Google Scholar
  92. Metag V, Liukkonen E, Sletten G, Glomset O, Bjornholm S (1974) Nucl Instr Meth 114:445Google Scholar
  93. Michaudon A (1973) Nuclear fission. In: Baranger M, Vogt E (eds) Advances in nuclear physics. Plenum Press, New York, pp 1–217Google Scholar
  94. Migneco E, Theobald JP (1968) Nucl Phys A 112:603Google Scholar
  95. Moll E, Schrader H et al (1975) Nucl Instr Meth 123:615Google Scholar
  96. Moll E, Schrader H, Siegert G, Hammers H, Asghar M, Bocquet JP, Armbruster P, Ewald H, Wollnik H (1977) Kerntechnik 19:374Google Scholar
  97. Moseley HGJ (1913) Phil Mag 26:1024Google Scholar
  98. Moseley HGJ (1914) Phil Mag 27:703Google Scholar
  99. Münzel J, Wollnik H, Pfeiffer B, Jung G (1981) Nucl Instr Meth 186:343Google Scholar
  100. Mustafa MG, Mosel U, Schmitt HW (1973) Phys Rev C 7:1519Google Scholar
  101. Myers WD, Swiatecki WJ (1966) Nucl Phys 81:1Google Scholar
  102. Nifenecker H, Mariolopoulos G, Bocquet JP, Brissot R, Hamelin C, Crancon J, Ristori C (1982) Z Physik A 308:39Google Scholar
  103. Nifenecker HA, Blachot J, Bocquet JP, Brissot R, Crancon J, Hamelin C, Mariolopoulos G, Ristori C (1980) Experimental approach to the dynamics of fission, physics and chemistry of fission, Jülich, Germany, (IAEA, Vienna, Austria) pp 35-64.Google Scholar
  104. Noddack I (1934) Angewandte Chemie 47:653Google Scholar
  105. Oed A, Geltenbort P, Brissot R, GÖnnenwein F, Perrin P, Aker E, Engelhardt D (1984) Nucl Instr Meth Phys Res 219:569Google Scholar
  106. Oed A, Geltenbort P, Gönnenwein F (1983) Nucl Instr Meth 205:451Google Scholar
  107. Pfeiffer B, Kratz KL, Thielemann F-K, Walters WB (2001) Nucl Phys A 693:282Google Scholar
  108. Pleasonton F (1968) Phys Rev 174:1500Google Scholar
  109. Polikanov SM, Druin VA, Karnaukhov VA, Mikheev VL, Pleve AA, Skobelev NK, Subbotin VG, Ter-Akop’yan GM, Fomichev VA (1962) Soviet Physics JETP 15:1016Google Scholar
  110. Quade U, Rudolph K, Siegert G (1979) Nucl Instr Meth 164:435Google Scholar
  111. Rejmund F, Ignatyuk AV, Junghans AR, Schmidt K-H (2000) Nucl Phys A A678:215Google Scholar
  112. Rengan K, Meyer RA (1993) Ultrafast chemical separations. Report: Nuclear Science Series: NAS-NS-3118 (Radiochemical Techniques). National Academy Press, Washington, DCGoogle Scholar
  113. Rudstam G (1987) Nucl Instr Meth Phys Res A 256:465Google Scholar
  114. Rudstam G, Aagard P, Ekström B, Lund E, Göcktürk H, Zwicky HU (1990) Radiochim Acta 49:155Google Scholar
  115. Rutherford E (1914) Phil Mag 27:488Google Scholar
  116. Rutherford E (1920) Proc Royal Soc (London) A97:374Google Scholar
  117. Schillebeeckx P, Wagemans C, Geltenbort P, Gönnenwein F, Oed A (1994) Nucl Phys A 580:15Google Scholar
  118. Schmitt HW, Kiker WE, Williams CW (1965) Phys Rev 137:B837Google Scholar
  119. Schmitt HW, Neiler JH, Walter FJ (1966) Phys Rev 141:1146Google Scholar
  120. Sida JJ, Armbruster P, Bernas M, Bocquet JP, Brissot R, Faust HR (1989) Nucl Phys A 502:233cGoogle Scholar
  121. Sime RL (1996) Lise Meitner: a life in physics. University of California Press, San FranciscoGoogle Scholar
  122. Steinhäuser S, Benlliure J, Böckstiegel C, Clerc H-G, Heinz A, Grewe A, De Jong M, Junghans AR, Müller J, Pfützner M, Schmidt KH (1998) Nucl Phys A 634:89Google Scholar
  123. Strittmatter RB, Wehring BH (1979) Nucl Instr Meth 166:473Google Scholar
  124. Strittmatter RB, Wehring BW (1978) Direct measurement of nuclide yields in thermal-neutron fission using HIAWATHA. In: International conference on neutron physics and nuclear data for reactors and other applied purposes, OECD, Harwell, p 223Google Scholar
  125. Strutinsky VM (1967) Nucl Phys A 95:420Google Scholar
  126. Stumpf P, Güttler U, Denschlag HO, Faust HR (1992) Odd-even effects in the reaction 241Am(2n, f). In: Qaim SM (ed) Nuclear data for science and technology. Springer, Berlin, p 145Google Scholar
  127. Swiatecki WJ (1955) Phys Rev 100:937Google Scholar
  128. Terrell J (1962) Phys Rev 127:880Google Scholar
  129. Thierens H, De Clercq A, Jacobs E, De Frenne D, D’hondt P, De Gelder P, Deruyter AJ (1981) Phys Rev C 23:2104Google Scholar
  130. Thierens H, Jacobs E, D’hondt P, De Clerc A, Piesens M, De Frenne D (1984) Phys Rev C 29:498Google Scholar
  131. Thirolf PG, Habs D (2002) Prog Part Nucl Phys 49:245Google Scholar
  132. Thomson JJ (1897) Phil Mag 44:293Google Scholar
  133. Tsekhanovich I, Denschlag HO, Davi M, Büyükmumcu Z, Gönnenwein F, Oberstedt S, Faust HR (2001) Nucl Phys A 688:633Google Scholar
  134. Tsekhanovich I, Denschlag HO, Davi M, Büyükmumcu Z, Wöstheinrich M, Gönnenwein F, Oberstedt S, Faust HR (1999) Nucl Phys A 658:217Google Scholar
  135. Unik JP, Gindler JE, Glendenin LE, Flynn KF, Gorski A, Sjoblom RK (1973) Fragment mass and kinetic energy distributions for fissioning systems ranging from mass 230–256, physics and chemistry of fission. IAEA, Rochester, p 19Google Scholar
  136. Vandenbosch R, Huizenga JR (1973) Nuclear fission. Academic, New YorkGoogle Scholar
  137. Viola VE, Kwiatowski K, Walker M (1985) Phys Rev C 31:1550Google Scholar
  138. Von Gunten HR (1969) Actin Rev 1:275Google Scholar
  139. Von Halban Jun H, Joliot F, Kowarski L (1939) Nature 143:470Google Scholar
  140. Wagemans C (1991a) Spontaneous fission. In: Wagemans C (ed) The nuclear fission process. CRC Press, Boca Raton, pp 35–61Google Scholar
  141. Wagemans C (ed) (1991b) The nuclear fission process. CRC Press, Boca Raton, pp 1–596Google Scholar
  142. Wagemans C, Dematte L, Pomme S, Schillebeeckx P (1996) Nucl Phys A 597:188Google Scholar
  143. Wahl AC (1988) At Data Nucl Data Tables 39:1Google Scholar
  144. Wahl AC (1989) Nuclear charge and mass distributions from fission. In: Behrens JW, Carlson AD (eds) Fifty years with nuclear fission (American Nuclear Society, La Grange Park, IL/Gaithersburg, MD) pp 525–532Google Scholar
  145. Walton GN (1961) Q Rev Chem Soc 40:71–98Google Scholar
  146. Weigmann H (1991) Neutron induced fission cross sections. In: Wagemans C (ed) The nuclear fission process. CRC Press, Boca Raton, pp 63–102Google Scholar
  147. Weizsäcker CFV (1935) Z Physik 96:431Google Scholar
  148. Whetstone SL Jr (1963) Phys Rev 131:1232Google Scholar
  149. Wilkins BD, Steinberg EP, Chasman RR (1976) Phys Rev C 14:1832Google Scholar
  150. Wöstheinrich M, Pfister R, Gönnenwein F, Denschlag HO, Faust H, Oberstedt S (1998) Ternary particles from the reactions 229Th(nth, f), 233U(nth, f) and 239Pu(nth, f). In: Fioni G, Faust H, Oberstedt S, Hambsch FJ (eds) Nuclear fission and fission-product spectroscopy. American Institute of Physics (AIP), Woodbury, NY), pp 330–337Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Institut für KernchemieUniversität MainzMainzGermany

Personalised recommendations