Neutron-Induced Prompt Gamma Activation Analysis (PGAA)

  • Z. Révay
  • R. M. Lindstrom
  • E. A. Mackey
  • T. Belgya

Abstract

This section presents the principles, the practical aspects, and the applications of neutron-induced prompt gamma activation analysis (PGAA). The fundamentals of the method, the characteristics of the analytical technique, and the instrumentation are introduced. The measurements of samples and standards together with the procedures of the quantitative analysis are described. High-energy gamma-ray spectroscopy, enabling reliable chemical analyses, is discussed in detail. A comprehensive section of the most recent applications of the PGAA method is also given.

Keywords

Titanium Nickel Magnesium Zirconium Carbide 

References

  1. Acharya R (2009) J Radioanal Nucl Chem 281:291Google Scholar
  2. Aghara SK, Venkatraman S, Manthiram A, Alvarez E (2005) J Radioanal Nucl Chem 265:321Google Scholar
  3. Ahlgren L, Albertsson M, Areberg J, Kadar L, Linden M, Mattsson S, McNeill F (1999) Acta Oncol 38:431Google Scholar
  4. Alfassi ZB, Chung C (1995) Prompt gamma neutron activation analysis. CRC Press, Boca RatonGoogle Scholar
  5. Alvarez E, Biegalski SR, Landsberger S (2007) Nucl Instrum Meth B 262:333Google Scholar
  6. Anderson DL (2000) J Radioanal Nucl Chem 244:225Google Scholar
  7. Anderson DL, Mackey EA (1993) J Radioanal Nucl Chem 167:145Google Scholar
  8. Anderson DL, Mackey EA (2005) J Radioanal Nucl Chem 263:683Google Scholar
  9. Anderson DL, Failey MP, Zoller WH, Walters WB, Gordon GE, Lindstrom RM (1981) J Radioanal Chem 63:97Google Scholar
  10. Anderson DL, Cunningham WC, Capar SG, Baratta EJ, Mackill P (2001) J Radioanal Nucl Chem 249:29Google Scholar
  11. Arunkumar TA, Alvarez E, Manthiram A (2008) J Mater Chem 18:190Google Scholar
  12. ASTM (1998) Standard practice for determining neutron fluence, fluence rate, and spectra by radioactivation techniques (E261), Report E 261-98. ASTM International, West ConshohockenGoogle Scholar
  13. Atakan V, Chen CW, Paul R, Riman RE (2008) Anal Chem 80:6626Google Scholar
  14. Balazsi C, Cinar FS, Kasztovszky Z, Cura ME, Yesilcubuk A, Weber F (2004) Silic Indus 69:293Google Scholar
  15. Balazsi C, Cinar FS, Addemir O, Kasztovszky Z, Kover Z, Weber F (2005) Size effects in micro- and nanocarbon added C/Si3N4 composite prepared by hot pressing. In: Dusza J, Danzer R, Morrell R (eds) Fractography of advanced ceramics Ii. Trans Tech, Zurich-Uetikon, pp 238–241Google Scholar
  16. Balazsi C, Bishop A, Yang JHC, Balazsi K, Weber F, Gouma PI (2009) Compos Interfaces 16:191Google Scholar
  17. Beasley DG, Alghamdi A, Freitas MC, Fernandes A, Révay Z (2009) J Radioanal Nucl Chem 281:307Google Scholar
  18. Beckurts KH, Wirtz K (1964) Neutron physics. Springer, BerlinGoogle Scholar
  19. Belgya T (2008) J Radioanal Nucl Chem 276:609Google Scholar
  20. Belgya T, Molnár GL (2004) Nucl Instrum Meth B 213:29Google Scholar
  21. Belgya T, Révay Z, Fazekas B, Héjja I, Dabolczi L, Molnár G, Kis J, Östör J (1997) The new budapest capture gamma-ray facility. In: Molnár GL, Belgya T, Révay Z (eds) Proceedings of the 9th international symposium capture gamma-ray spectroscopy and related topics. Springer, Budapest, pp 826–837Google Scholar
  22. Belgya T, Révay Z, Ember PP, Weil JL, Molnár GL (2003) The cold neutron PGAA-NIPS facility at the Budapest Research Reactor. In: Kvasil J, Cejnar P, Krticka M (eds) Proceedings of the 11th international symposium on capture gamma-ray spectroscopy and related topics. World Scientific, Singapore, pp 562–568Google Scholar
  23. Belgya T, Révay Z, Molnár GL (2005) J Radioanal Nucl Chem 265:181Google Scholar
  24. Belgya T, Kis Z, Szentmiklosi L, Kasztovszky Z, Festa G, Andreanelli L, De Pascale MP, Pietropaolo A, Kudejova P, Schulze R, Materna T (2008) J Radioanal Nucl Chem 278:713Google Scholar
  25. Biro KT (2005) J Radioanal Nucl Chem 265:235Google Scholar
  26. Blaauw M, Belgya T (2005) J Radioanal Nucl Chem 265:257Google Scholar
  27. Borella A, Moens A, Schillebeeckx P, Van Bijlen R, Molnár GL, Belgya T, Révay Z, Szentmiklósi L (2005) J Radioanal Nucl Chem 265:267Google Scholar
  28. Borsaru M, Berry M, Biggs M, Rojc A (2004) Nucl Instrum Meth B213:530Google Scholar
  29. Buckley CE, Birnbaum HK (2002) J Alloy Compd 330:649Google Scholar
  30. Byun SH, Sun GM, Choi HD (2002) Nucl Instrum Meth A487:521Google Scholar
  31. Byun SH, Sun GM, Choi HD (2004) Nucl Instrum Meth B213:535Google Scholar
  32. Cao LR, Hattrick-Simpers JR, Bindel R, Tomlin BE, Zeisler R, Paul R, Bendersky LA, Downing RG (2009) J Radioanal Nucl Chem. doi:10.1007/s10967-009-0058-yGoogle Scholar
  33. Charbucinski J, Duran O, Freraut R, Heresi N, Pineyro I (2004) Appl Radiat Isot 60:771Google Scholar
  34. Chen-Mayer HH, Mildner DFR, Lamaze GP, Paul RL, Lindstrom RM (1999) In: Duggan JL, Morgan IL (eds) Application of accelerators in research and industry (AIP Conference proceedings, Vol. 475), Amer Inst Phys, pp 718–721Google Scholar
  35. Chen-Mayer HH, Mackey EA, Paul RL, Mildner DFR (2000) J Radioanal Nucl Chem 244:391Google Scholar
  36. Chen-Mayer HH, Lamaze GP, Mildner DFR, Zeisler R, Gibson WM (2001) Anal Sci 17(Suppl):i629Google Scholar
  37. Chen-Mayer HH, Heward WJ, Paul RL, Klug FJ, Gao Y (2003) J Mater Res 18:2486Google Scholar
  38. Cho H-J, Chung Y-S, Kim Y-J (2005a) Nucl Instrum Meth B229:499Google Scholar
  39. Cho HJ, Chung YS, Kim YJ (2005b) J Radioanal Nucl Chem 264:701Google Scholar
  40. Cho HJ, Chun KJ, Park KW, Chung YS, Kim HR (2007) J Radioanal Nucl Chem 272:403Google Scholar
  41. Choi HD, Firestone RB, Lindstrom RM, Molnár GL, Mughabghab SF, Paviotti-Corcuera R, Révay Z, Trkov A, Zerkin V, Zhou C (2007) Database of prompt gamma rays from slow neutron capture for elemental analysis (STI/PUB/1263). IAEA, ViennaGoogle Scholar
  42. Chung C (1995) Neutron damage and induced effects on nuclear instruments used for PGAA. In: Alfassi ZB, Chung C (eds) Prompt gamma neutron activation analysis. CRC Press, Boca Raton, pp 37–58Google Scholar
  43. Chung C, Chen YR (1991) Nucl Instrum Meth A301:328Google Scholar
  44. Chung YS, Moon JH, Cho HJ, Kim HR (2007) J Radioanal Nucl Chem 272:391Google Scholar
  45. Comar D, Crouzel C, Chasteland M, Riviere R, Kellershohn C (1969a) The use of neutron capture gamma radiations for the analysis of biological samples. In: DeVoe JR (ed) Modern trends in activation analysis (NBS Spec. Pub. 312). National Bureau of Standards, Washington, pp 114–127Google Scholar
  46. Comar D, Crouzel C, Chasteland M, Riviere R, Kellershohn C (1969b) Nucl Appl 6:344Google Scholar
  47. Copley JRD, Majkrzak CF (1989) Calculations and measurement of the performance of converging neutron guides. In: Majkrzak CF (ed) Thin-film neutron optical devices: mirrors, supermirrors, multilayer monochromators, polarizers, and beam guides (Proc. SPIE 983). Society of Photo-Optical Instrumentation Engineers, Bellingham, pp 93–104Google Scholar
  48. Copley JRD, Stone CA (1989) Nucl Instrum Meth A281:593Google Scholar
  49. Cristache C, Gmeling K, Culicov O, Frontasyeva MV, Toma M, Duliu OG (2009) J Radioanal Nucl Chem 279:7Google Scholar
  50. De Soete D, Gijbels R, Hoste J (1972) Neutron activation analysis. Wiley-Interscience, LondonGoogle Scholar
  51. Debertin K, Helmer RG (1988) Gamma- and X-ray spectrometry with semiconductor detectors. North-Holland, AmsterdamGoogle Scholar
  52. Deconninck G, Demortier G, Bodart F (1981) Atomic Energy Review, Supplement 2, IAEA, Vienna, pp 151–234Google Scholar
  53. Degenaar IH, Blaauw M, Bode P, de Goeij JJM (2004) J Radioanal Nucl Chem 260:311Google Scholar
  54. Dokhale PA, Csikai J, Olah L (2001) Appl Radiat Isot 54:967Google Scholar
  55. Dorsey DJ, Hebner R, Charlton WS (2004) J Compos Mater 38:1505Google Scholar
  56. Dyar MD, Wiedenbeck M, Robertson D, Cross LR, Delaney JS, Ferguson K, Francis CA, Grew ES, Guidotti CV, Hervig RL, Hughes JM, Husler J, Leeman W, McGuire AV, Rhede D, Rothe H, Paul RL, Richards I, Yates M (2001) Geostandard Newslett 25:441Google Scholar
  57. Ebihara M, Oura Y (2001) Earth Planet Space 53:1039Google Scholar
  58. Ehmann WD, Vance DE (1991) Radiochemistry and nuclear methods of analysis. Wiley, New YorkGoogle Scholar
  59. Elekes Z, Belgya T, Molnár GL, Kiss AZ, Csatlós M, Gulyás J, Krasznahorkay A, Máté Z (2003) Nucl Instrum Meth A503:580Google Scholar
  60. Ember PP, Révay Z, Belgya T, Molnar G (2001) Magy Kem Foly 107:438Google Scholar
  61. Ember PP, Belgya T, Molnár GL (2002) Appl Radiat Isot 56:535Google Scholar
  62. Ember PP, Belgya T, Weil JL, Molnár GL (2004) Nucl Instrum Meth B213:406Google Scholar
  63. English GA, Firestone RB, Perry DL, Reijonen J, Ludewigt B, Leung KN, Garabedian G, Molnar G, Révay Z (2004) Nucl Instrum Meth B213:410Google Scholar
  64. English GA, Firestone RB, Perry DL, Reijonen JP, Leung KN, Garabedian GF, Molnár GL, Révay Z (2008) J Radioanal Nucl Chem 277:25Google Scholar
  65. Fazekas B, Molnár GL, Belgya T, Dabolczi L, Simonits A (1997) J Radioanal Nucl Chem 215:271Google Scholar
  66. Fazekas B, Révay Z, Östör J, Belgya T, Molnár G, Simonits A (1999) Nucl Instrum Meth A422:469Google Scholar
  67. Fleming RF (1982) Appl Radiat Isot 33:1263Google Scholar
  68. Freeman JM, Jenkin JG (1966) Nucl Instrum Meth 43:269Google Scholar
  69. Freitas MC, Révay Z, Szentmiklosi L, Dionisio I, Dung HM, Pacheco AMG (2008) J Radioanal Nucl Chem 278:381Google Scholar
  70. Furuta E, Nakahara H, Hatsukawa Y, Matsue H, Sakane H (2008) J Radioanal Nucl Chem 278:553Google Scholar
  71. Gilmore G, Hemingway JD (1995) Practical gamma-ray spectrometry. Wiley, ChichesterGoogle Scholar
  72. Gmeling K, Harangi S, Kasztovszky Z (2005) J Radioanal Nucl Chem 265:201Google Scholar
  73. Gmeling K, Nemeth K, Martin U, Eby N, Varga Z (2007a) J Volcanol Geoth Res 159:70Google Scholar
  74. Gmeling K, Kasztovszky Z, Szentmiklosi L, Revay Z, Harangi S (2007b) J Radioanal Nucl Chem 271:397Google Scholar
  75. Grazman BL, Schweikert EA (1991) J Radioanal Nucl Chem At 152:497Google Scholar
  76. Harrison RK, Landsberger S (2009) Nucl Instrum Meth B267:513Google Scholar
  77. Hatsukawa Y, Oshima M, Hayakawa T, Noh T, Shinohara N (2002) Nucl Instrum Meth A482:328Google Scholar
  78. Heath RL, Helmer RG, Davidson JR, Gehrke RJ (1999) Gamma-ray spectrum catalogue: Ge and Si detector spectra, 4th edn. CD-ROM., 4, CD-ROM. INEEL, Idaho FallsGoogle Scholar
  79. Helmer RG, Greenwood RC, Gehrke RJ (1971) Nucl Instrum 96:173Google Scholar
  80. Henkelmann R, Born HJ (1973) J Radioanal Chem 16:473Google Scholar
  81. Hilger A, Kardjilov N, Strobl M, Treimar W, Banhart W (2006) Physica B 385–386:1213Google Scholar
  82. Hils T, Boeni P, Stahn J (2004) Focusing parabolic guide for very small samples. Elsevier Science, Physica B-Condensed Matter 350:166–168Google Scholar
  83. Ihnat M (2000) J Radioanal Nucl Chem 245:73Google Scholar
  84. Im HJ, Lee YH, Park YJ, Song BC, Cho J, Kim WH (2007) Nucl Instrum Meth A574:272Google Scholar
  85. Im HJ, Song K (2009a) Appl Spectrosc Rev 44:317Google Scholar
  86. Im HJ, Song BC, Park YJ, Song K (2009b) Classification of materials for explosives from prompt gamma spectra by using principal component analysis. Pergamon-Elsevier Science, Appl Rad Isot 67:1458–1462Google Scholar
  87. Isenhour TL, Morrison GH (1966a) Anal Chem 38:162Google Scholar
  88. Isenhour TL, Morrison GH (1966b) Anal Chem 38:167Google Scholar
  89. Johansen GA, Jackson P (2004) Radioisotope gauges for industrial process measurements. Wiley, ChichesterGoogle Scholar
  90. Jones CY, Wu J, Li LP, Haile SM (2005) J Appl Phys 97:114908Google Scholar
  91. Jordanov VT, Knoll GF, Huber AC, Pantazis JA (1994) Nucl Instrum Meth A353:261Google Scholar
  92. Jurney ET, Starner JW, Lynn JE, Raman S (1997) Phys Rev C 56:118Google Scholar
  93. Kasviki K, Stamatelatos IE, Kalef-Ezra J (2007a) Evaluation of spatial sensitivity of a prompt gamma neutron activation analysis facility for the in vivo determination of nitrogen in small animals. Springer, Berlin, pp 225–231Google Scholar
  94. Kasviki K, Stamatelatos IE, Yannakopoulou E, Papadopoulou P, Kalef-Ezra J (2007b) Nucl Instrum Meth B263:3Google Scholar
  95. Kasztovszky Z, Révay Z, Belgya T, Fazekas B, Östör J, Molnár GL, Molnar G, Borossay J (1999) J Anal Atom Spectrom 14:593Google Scholar
  96. Kasztovszky Z, Révay Z, Belgya T, Molnár GL (2000) J Radioanal Nucl Chem 244:379Google Scholar
  97. Kasztovszky Z, Révay Z, Molnar G, Wootsch A, Paal Z (2002) Catal Comm 3:553Google Scholar
  98. Kasztovszky Z, de Antczak MM, Antczak A, Milian B, Bermudez J, Sajo-Bohus L (2004) Nukleonika 49:107Google Scholar
  99. Kasztovszky Z, Panczyk E, Fedorowicz W, Révay Z, Sartowska B (2005) J Radioanal Nucl Chem 265:193Google Scholar
  100. Kasztovszky Z, Visser D, Kockelmann W, Pantos E, Brown A, Blaauw M, Hallebeek P, Veerkamp J, Krook W, Stuchfield HM (2007) Nuovo Cimento 30:67Google Scholar
  101. Kasztovszky Z, Biro KT, Marko A, Dobosi V (2008a) Archaeometry 50:12Google Scholar
  102. Kasztovszky Z, Biro KT, Marko A, Dobosi V (2008b) J Radioanal Nucl Chem 278:293Google Scholar
  103. Kasztovszky Z, Kis Z, Belgya T, Kockelmann W, Imberti S, Festa G, Filabozzi A, Andreani C, Kirfel A, Biro KT, Duzs K, Hajnal Z, Kudejova P, Tardocchi M (2008c) J Radioanal Nucl Chem 278:661Google Scholar
  104. Kasztovszky Z, Kockelmann WA, Cippo EP, Gorini G, Tardocchi M (2008d) Nuovo Cimento 31:143Google Scholar
  105. Kis Z, Fazekas B, Östör J, Révay Z, Belgya T, Molnár GL, Koltay L (1998) Nucl Instrum Methods A418:374Google Scholar
  106. Knoll GF (2000) Radiation detection and measurement. Wiley, New YorkGoogle Scholar
  107. Kobayashi T, Kanda K (1983) Nucl Instrum Meth 204:525Google Scholar
  108. Krusche B, Lieb KP, Daniel H, von Egidy T, Barreau G, Börner HG, Brissot R, Hofmeyr C, Rascher R (1982) Nucl Phys A386:245Google Scholar
  109. Kudejova P, Materna T, Jolie J, Turler A, Wilk P, Baechler S, Kasztovszky Z, Révay Z, Belgya T (2005) J Radioanal Nucl Chem 265:221Google Scholar
  110. Kudejova P, Meierhofer G, Zeitelhack K, Jolie J, Schulze R, Turler A, Materna T (2008) J Radioanal Nucl Chem 278:691Google Scholar
  111. Kudejova P, Canella L, Schulze R, Jolie J, Turler A (2009) New PGAI-NT and PGAA at FRM II for geological samples: test measurements on allende meteorite. Pergamon-Elsevier Science, Geochim Cosmichim Acta 73(Suppl):A701–A701Google Scholar
  112. Kvardakov VV, Chen-Mayer HH, Mildner DFR, Somenkov VA (1998) J Appl Phys 83:3876Google Scholar
  113. Lea DE (1934) Nature 133:24Google Scholar
  114. Lehmann EH, Vontobel P, Frei G (2007) Nuovo Cimento C 30:93Google Scholar
  115. Leo WR (1987) Techniques for nuclear and particle physics experiments. Springer, BerlinGoogle Scholar
  116. Lim CS, Sowerby BD (2005) J Radioanal Nucl Chem 264:4Google Scholar
  117. Lindstrom DJ (1990) Nucl Instrum Meth A299:584Google Scholar
  118. Lindstrom RM (1998) Fresenius J Anal Chem 360:322Google Scholar
  119. Lindstrom RM (2003) J Radioanal Nucl Chem 257:557Google Scholar
  120. Lindstrom RM, Lindstrom DJ, Slaback LA, Langland JK (1990) Nucl Instrum Meth A299:425Google Scholar
  121. Lindstrom RM, Zeisler R, Vincent DH, Greenberg RR, Stone CA, Mackey EA, Anderson DL, Clark DD (1993) J Radioanal Nucl Chem At 167:121Google Scholar
  122. Lone MA, Santry DC, Inglis WM (1980) Nucl Instrum Meth 174:521Google Scholar
  123. Lone MA, Leavitt RA, Harrison DA (1981) At Data Nucl Data Tables 26:511Google Scholar
  124. Mackey EA, Copley JRD (1993) J Radioanal Nucl Chem 167:127Google Scholar
  125. Mackey EA, Spatz RO (2009) J Radioanal Nucl Chem 281:91Google Scholar
  126. Mackey EA, Gordon GE, Lindstrom RM, Anderson DL (1991) Anal Chem 63:288Google Scholar
  127. Mackey EA, Anderson DL, Liposky PJ, Lindstrom RM, Chen-Mayer H, Lamaze GP (2004) Nucl Instrum Meth B226:426Google Scholar
  128. Mackey EA, Cronise MP, Fales CN, Greenberg RR, Leigh SD, Long SE, Marlow AF, Murphy KE, Oflaz R, Sieber JR, Rearick MS, Wood LJ, Yu LL, Wilson SA, Briggs PH, Brown ZA, Budahn J, Kane PF, Hall WL (2007) Anal Bioanal Chem 387:2401Google Scholar
  129. Maier-Leibnitz H (1969) Neutron conducting tubes. In: Ryde N (ed) Neutron-capture gamma-ray spectroscopy (STI/PUB/235). IAEA, Vienna, pp 93–103Google Scholar
  130. Manescu A, Fiori F, Giuliani A, Kardjilov N, Kasztovszky Z, Rustichelli F, Straumal B (2008) J Phys-Condens Mat 20:104250Google Scholar
  131. Marschall HR, Kasztovszky Z, Gmeling K, Altherr R (2005) J Radioanal Nucl Chem 265:339Google Scholar
  132. Marschall HR, Altherr R, Gmeling K, Kasztovszky Z (2009) Mineral Petrol 95:291Google Scholar
  133. Martinho E, Gonçalves IF, Salgado J (2003) Appl Radiat Isot 58:371Google Scholar
  134. Matsue H, Yonezawa C (2001) J Radioanal Nucl Chem 249:11Google Scholar
  135. Matsumoto T, Aizawa O, Nozaki T, Sato T (1984) Atomkernenergie 44:566Google Scholar
  136. Mildner DFR, Chen-Mayer HH (1999) Nucl Instrum Meth At 422: 21Google Scholar
  137. Mildner DFR, Chen-Mayer HH, Gibson WM (2002) J Appl Phys 92:6911Google Scholar
  138. Miri-Hakimabad H, Panjeh H, Vejdani-Noghreiyan A (2008) Nucl Sci Tech 19:109Google Scholar
  139. Miura T, Matsue H, Kuroiwa T, Chiba K (2008) J Radioanal Nucl Chem 278:653Google Scholar
  140. Miyoshi M, Shimono M, Hasenaka T, Sano T, Fukuoka T (2008) J Radioanal Nucl Chem 278:343Google Scholar
  141. Molnár GL (2004) Handbook of prompt gamma activation analysis with neutron beams. Kluwer, DordrechtGoogle Scholar
  142. Molnár G, Belgya T, Dabolczi L, Fazekas B, Révay Z, Veres Á, Bikit I, Kiss Z, Östör J (1997) J Radioanal Nucl Chem 215:111Google Scholar
  143. Molnár GL, Révay Z, Paul RL, Lindstrom RM (1998) J Radioanal Nucl Chem 234:21Google Scholar
  144. Molnár GL, Révay Z, Belgya T, Firestone RB (2000) Appl Radiat Isot 53:527Google Scholar
  145. Molnár GL, Belgya T, Révay Z, Qaim SM (2002a) Radiochim Acta 90:479Google Scholar
  146. Molnár GL, Révay Z, Belgya T (2002b) Nucl Instrum Meth 489:140Google Scholar
  147. Molnár GL, Révay Z, Belgya T (2004) Nucl Instrum Meth B213:389Google Scholar
  148. Moody JR, Greenberg RR, Pratt KW, Rains TC (1988) Anal Chem 60:1203AGoogle Scholar
  149. Morgan WD (2000) In: Yasumura S, Wang J, Pierson RN (eds) Of mermaids and mountains – three decades of prompt activation in vivo., pp 128–133Google Scholar
  150. Naqvi AA, Nagadi MM (2004) J Radioanal Nucl Chem 260:641Google Scholar
  151. Nunez-Lagos R, Virto A (1996) Appl Radiat Isot 47:1011Google Scholar
  152. O’Meara JM, Blackburn BW, Chichester DL, Gierga DP, Yanch JC (2001) Appl Radiat Isot 55:767Google Scholar
  153. Orphan VJ, Rasmussen NC (1967) Nucl Instrum Meth 48:282Google Scholar
  154. Orphan VJ, Rasmussen NC, Harper TL (1970) In: Report DASA 2570 (GA 10278), Gulf General Atomic, San Diego, 685Google Scholar
  155. Oura Y, Nakahara H, Sueki K, Sato W, Saito A, Tomizawa T, Nishikawa T (1999) Czech J Phys Suppl 49:311Google Scholar
  156. Oura Y, Iguchi H, Nagahata T, Nakamatsu H, Otoshi T, Ebihara M (2007) J Radioanal Nucl Chem 272:381Google Scholar
  157. Owens A (1989) Nucl Instrum Meth A274:297Google Scholar
  158. Owens A, Gehrels N, Pascarelle SM, Teegarden BJ (1991) IEEE Trans Nucl Sci 38:221Google Scholar
  159. Paglia G, Buckley CE, Udovic TJ, Rohl AL, Jones F, Maitland CF, Connolly J (2004) Chem Mater 16:1914Google Scholar
  160. Pallone AK, Demaree JD (2009) Nucl Instrum Meth B267:2927Google Scholar
  161. Park CS, Sun GM, Byun SH, Choi HD (2005) J Radioanal Nucl Chem 265:283Google Scholar
  162. Park CS, Sun GM, Choi HD (2006) Nucl Instrum Meth B245:367Google Scholar
  163. Park YJ, Song BC, Chowdhury MI, Jee KY (2004) J Radioanal Nucl Chem 260:585Google Scholar
  164. Park YJ, Song BC, Im HJ, Kim JY (2009) Nucl Instrum Meth A606:243Google Scholar
  165. Paul R, Mackey EA, Zeisler R, Spatz RO, Tomlin BE (2009) J Radioanal Nucl Chem 282:945Google Scholar
  166. Paul RL (1997) Analyst 122:R35Google Scholar
  167. Paul RL (2001) Analyst 126:217Google Scholar
  168. Paul RL (2005) Analyst 130:99Google Scholar
  169. Paul RL, Lindstrom RM (2000) J Radioanal Nucl Chem 243:181Google Scholar
  170. Perego RC, Blaauw M (2005) J Appl Phys 97:123533Google Scholar
  171. Perry DL, Firestone RB, Molnár GL, Révay Z, Kasztovszky Z, Gatti RC, Wilde P (2002) J Anal Atom Spectrom 17:32Google Scholar
  172. Perry DL, English GA, Firestone RB, Molnár GL, Révay Z (2005) J Radioanal Nucl Chem 265:229Google Scholar
  173. Perry DL, English GA, Firestone RB, Leung KN, Garabedian G, Molnár GL, Révay Z (2008) J Radioanal Nucl Chem 276:273Google Scholar
  174. Phillips GW, Marlow KW (1976a) Nucl Instrum Meth 72:125Google Scholar
  175. Phillips GW, Marlow KW (1976b) Nucl Instrum Meth 137:525Google Scholar
  176. Postma H, Schillebeeckx P (2005) J Radioanal Nucl Chem 265:297Google Scholar
  177. Postma H, Perego RC, Schillebeeckx P, Siegler P, Borella A (2007) Neutron resonance capture analysis and applications. Springer, Berlin, pp 95–99Google Scholar
  178. Rasmussen NC, Hukai Y, Inouye T, Orphan VJ (1969) Thermal neutron capture gamma-ray spectra of the elements, Report AFCRL-69-0071. Massachusetts Institute of Technology, BostonGoogle Scholar
  179. Reijonen J, Leung KN, Firestone RB, English JA, Perry DL, Smith A, Gicquel F, Sun M, Koivunoro H, Lou TP, Bandong B, Garabedian G, Révay Z, Szentmiklosi L, Molnar G (2004) Nucl Instrum Meth At 522:598Google Scholar
  180. Révay Z (2005) J Radioanal Nucl Chem 264:283Google Scholar
  181. Révay Z (2006) Nucl Instrum Meth A564:688Google Scholar
  182. Révay Z (2008) J Radioanal Nucl Chem 276:825Google Scholar
  183. Révay Z (2009) Anal Chem 81:6851Google Scholar
  184. Révay Z, Molnár GL, Belgya T, Kasztovszky Z, Firestone RB (2000) J Radioanal Nucl Chem 244:383Google Scholar
  185. Révay Z, Molnár GL, Belgya T, Kasztovszky Z, Firestone RB (2001a) J Radioanal Nucl Chem 248:395Google Scholar
  186. Révay Z, Belgya T, Ember PP, Molnár GL (2001b) J Radioanal Nucl Chem 248:401Google Scholar
  187. Révay Z, Molnár GL, Belgya T, Kasztovszky Z (2003) J Radioanal Nucl Chem 257:561Google Scholar
  188. Révay Z, Belgya T, Kasztovszky Z, Weil JL, Molnár GL (2004) Nucl Instrum Meth B 213:385Google Scholar
  189. Révay Z, Belgya T, Szentmiklósi L, Molnár GL (2005) J Radioanal Nucl Chem 264:277Google Scholar
  190. Révay Z, Belgya T, Molnár GL, Rausch H, Braun T (2006) Chem Phys Lett 423:450Google Scholar
  191. Révay Z, Harrison RK, Alvarez E, Biegalski SR, Landsberger S (2007) Nucl Instrum Meth A577:611Google Scholar
  192. Révay Z, Belgya T, Szentmiklosi L, Kis Z (2008a) J Radioanal Nucl Chem 278:643Google Scholar
  193. Révay Z, Belgya T, Szentmiklosi L, Kis Z, Wootsch A, Teschner D, Swoboda M, Schlogl R, Borsodi J, Zepernick R (2008b) Anal Chem 80:6066Google Scholar
  194. Rios-Martinez C, Unlu K, Wehring BW (1998) J Radioanal Nucl Chem 234:119Google Scholar
  195. Robinson JA, Hartman MR, Reese SR (2009) J Radioanal Nucl Chem. doi:10.1007/s10967-009-0358-2Google Scholar
  196. Rogante M, De Marinis G, Kasztovszky Z, Milazzo F (2007) Nuovo Cimento C 30:113Google Scholar
  197. Rossbach M (1991) Anal Chem 63:2156Google Scholar
  198. Sah RN, Brown PH (1997) Microchem J 56:285Google Scholar
  199. Sajo-Bohus LS, de Antczak MMM, Greaves ED, Antczak A, Bermudez J, Kasztovszky Z, Poirier T, Simonits A (2005) J Radioanal Nucl Chem 265:247Google Scholar
  200. Sajo-Bohus L, Mackowiak deAntczak, M. M., Kastovszky Z, Greaves ED, Antczak A, Simonits A, Palacios D, Millan B (2006) J Phys Conference Series 41:8Google Scholar
  201. Sakai Y, Kubo MK, Matsue H, Yonezawa C (2005) J Radioanal Nucl Chem 265:287Google Scholar
  202. Sandor Z, Tolgyesi S, Gresits I, Kasztovszky Z (2002) J Radioanal Nucl Chem 254:283Google Scholar
  203. Segawa M, Matsue H, Sekiya Y, Yamada S, Shinohara T, Oku T, Sasao H, Suzuki J, Shimizu HM (2008) J Radioanal Nucl Chem 278:647Google Scholar
  204. Sieber JR, Mackey EA, Marlow AF, Paul R, Martin R (2007) Powder Diffr 22:146Google Scholar
  205. Stone CA, Blackburn DH, Kauffman DA, Cranmer DC, Olmez I (1994) Nucl Instrum Meth A349:515Google Scholar
  206. Sueki K, Kobayashi K, Sato W, Nakahara H, Tomizawa T (1996) Anal Chem 68:2203Google Scholar
  207. Sueki K, Oura Y, Sato W, Nakahara H, Tomizawa T (1998) J Radioanal Nucl Chem 234:27Google Scholar
  208. Sun G, Park C, Choi H (2008) J Radioanal Nucl Chem 278:637Google Scholar
  209. Sun GM, Byun SH, Choi HD (2003) J Radioanal Nucl Chem 256:541Google Scholar
  210. Sun GM, Park CS, Choi HD (2005) J Radioanal Nucl Chem 264:603Google Scholar
  211. Swider JR, Walters WB (2004) Nucl Instrum Meth B 226:659Google Scholar
  212. Swider JR, Mustillo DM, Conticchio LF, Walters WB, Paul RL, Lindstrom RM (1994) In: Kern J (ed) Proceedings of the 8th international symposium on capture gamma-ray spectroscopy and related topic, World Scientific, Singapore, pp 335–337Google Scholar
  213. Szakmany G, Kasztovszky Z (2004) Eur J Mineralog 16:285Google Scholar
  214. Szentmiklosi L, Belgya T, Révay Z (2005) J Radioanal Nucl Chem 264:229Google Scholar
  215. Szentmiklosi L, Révay Z, Belgya T (2006a) Nucl Instrum Meth At 564:655Google Scholar
  216. Szentmiklosi L, Révay Z, Chobola R, Mell P, Szakacs S, Kasa I (2006b) J Radioanal Nucl Chem 267:415Google Scholar
  217. Szentmiklosi L, Gmeling K, Révay Z (2007a) J Radioanal Nucl Chem 271:447Google Scholar
  218. Szentmiklosi L, Révay Z, Belgya T (2007b) Nucl Instrum Meth B 263:90Google Scholar
  219. Szentmiklosi L, Révay Z, Belgya T, Simonits A, Kis Z (2008) J Radioanal Nucl Chem 278:657Google Scholar
  220. Teschner D, Borsodi J, Wootsch A, Révay Z, Havecker M, Knop-Gericke A, Jackson SD, Schlogl R (2008) Science 320:86Google Scholar
  221. Toh Y, Oshima M, Kimura A, Koizumi M, Furutaka K, Hatsukawa Y, Goto J (2008) J Radioanal Nucl Chem 278:685Google Scholar
  222. Tompa K, Banki P, Bokor M, Lasanda G, Vasaros L (2003) J Alloy Compd 350:52Google Scholar
  223. Turhan S, Yucel H, Demirbas A (2004) J Radioanal Nucl Chem 262:661Google Scholar
  224. Unlu K, Rios-Martinez C (2005) J Radioanal Nucl Chem 265:329Google Scholar
  225. van den Berg AWC, Pescarmona PP, Schoonman J, Jansen JC (2007) Chem Eur J 13:3590Google Scholar
  226. Westcott CH (1955) J Nucl Energy 2:59Google Scholar
  227. Wehring BW, Unlu K, Rios-Martinez C (1997) Appl Rad Isotopes 48:1343Google Scholar
  228. Wilhelm M, Eberth J, Pascovici G, Radermacher E, Thomas HG, vonBrentano P, Prade H, Lieder RM (1996) Nucl Instrum Meth A381:462Google Scholar
  229. Yamauchi S, Sakai Y, Watanabe Y, Kubo MK, Matsue H (2005) In: Proceedings of the 55th annual meeting of the Japan-Wood-Research-Society, Kyoto, Japan, March. Springer, Tokyo, pp 279–281Google Scholar
  230. Yamazaki S, Oura Y, Ebihara M (2007) J Radioanal Nucl Chem 272:353Google Scholar
  231. Yonezawa C, Wood AKH, Magara M, Sawahata S, Hoshi M, Ito Y, Tachikawa E (1993) Prompt gamma-ray analysis using JRR-3M cold and thermal neutron guide beams. In: Proceedings of the 5th international symposium advanced nuclear energy research (JAERI-M 93-228), Mito, Japan, vol 2. JAERI, Tokai, pp 854–861Google Scholar
  232. Yonezawa C (1999) Biol Trace Elem Res 71–2:407Google Scholar
  233. Yonezawa C (2002) Bunseki Kagaku 51:61Google Scholar
  234. Young SK, Trevino SF, Tan NCB, Paul RL (2003) J Polym Sci B41:1485Google Scholar
  235. Zeisler R, Lamaze GP, Chen-Mayer HH (2001) J Radioanal Nucl Chem 248:35Google Scholar
  236. Zeisler R, James WD, Mackey EA, Spatz RO, Greenberg RR (2008) J Radioanal Nucl Chem 278:783Google Scholar
  237. Zhang L, Ni B, Tian W, Huang D, Zhang G, Liu C, Wang P, Liu L, Li D (2005) Atom Energy Sci Tech 39:282Google Scholar
  238. Zhao L, Robinson L (2009) J Radioanal Nucl Chem 282:151Google Scholar
  239. Zhao L, Robinson L, Mackey EA, Paul RL, Greenberg RR (2008) J Radioanal Nucl Chem 277:275Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Z. Révay
    • 1
  • R. M. Lindstrom
    • 2
  • E. A. Mackey
    • 2
  • T. Belgya
    • 1
  1. 1.Hungarian Academy of SciencesBudapestHungary
  2. 2.National Institute of Standards and TechnologyGaithersburgUSA

Personalised recommendations