Skip to main content

VEGF

  • Reference work entry
  • First Online:
Cancer Therapeutic Targets
  • 1877 Accesses

Abstract

VEGF is an approximately 45 kDa homodimeric glycoprotein in the VEGF family, which includes more than seven proteins. Five of the polypeptides are encoded by distinct genes in the human genome: VEGF-A (VEGF), VEGF-B, VEGF-C, VEGF-D, and PGF (placenta growth factor) (Carmeliet, Oncology 69:4–10, 2005; Shibuya, Vascular permeability/vascular endothelial growth factor. In: Figg WD, Folkman J (eds) Angiogenesis. Springer, New York, pp 89–98, 2008). VEGF is considered to play a key role in regulating angiogenesis both in normal and malignant cells. VEGF-A exists in many different isoforms as a result of alternative exon splicing; the most frequent subtypes are VEGF121, VEGF165, VEGF189, and VEGF206. The shorter amino acid sequence isoform VEGF121 is soluble, in contrast to VEGF165, VEGF189, and VEGF206, which are heparin bound with varying affinity. VEGF121 and VEGF165, which also have the propensity to be unbound, are believed to have a central role in tumor angiogenesis (Kerbel and Ellis, Angiogenesis. In: DeVita, Hellman, Rosenberg (eds) Cancer. LWW, Philadelphia, pp 101–112, 2011).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfaro C, et al. Influence of bevacizumab, sunitinib and sorafenib as single agents or in combination on the inhibitory effects of VEGF on human dendritic cell differentiation from monocytes. BJC. 2009;100:1111–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aragon-Ching JB, et al. The clinical utility of bevacizumab. In: Figg WD, Folkman J, editors. Angiogenesis. New York: Springer; 2008. p. 375–85.

    Chapter  Google Scholar 

  • Carmeliet P. VEGF as a key mediator of angiogenesis in cancer. Oncology. 2005;69 Suppl 3:4–10.

    Article  CAS  PubMed  Google Scholar 

  • Correale P, et al. Immunomodulatory properties of anticancer monoclonal antibodies: is the ‘magic bullet’ still a reliable paradigm? Immunotherapy. 2011;3:1–4.

    Article  CAS  PubMed  Google Scholar 

  • FDA website: http://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs

  • Ferrara N. Role of vascular endothelial growth factor in regulation of angiogenesis. In: Teicher BA, editor. Antiangiogenic agents in cancer therapy. Totawa: Humana Press; 1999. p. 119–41.

    Chapter  Google Scholar 

  • Ferrara N. Overview and clinical applications of VEGF-A. In: Figg WD, Folkman J, editors. Angiogenesis. New York: Springer; 2008. p. 345–35.

    Chapter  Google Scholar 

  • Folkman J. History of angiogenesis. In: Figg WD, Folkman J, editors. Angiogenesis. New York: Springer; 2008. p. 1–14.

    Chapter  Google Scholar 

  • Huan Y, et al. Vascular normalizing doses of antiangiogenic treatment reprogram he immunosuppressive tumor microenvironment and enhance immunotherapy. Proc Natl Acad Sci U S A. 2012;109:17561–6.

    Article  Google Scholar 

  • Hurvitz H, et al. Bevacizumab plus Irinotecan, fluorouracil and leucovorin for metastatic colorectal cancer. NEJM. 2004;350:2335–42.

    Article  Google Scholar 

  • Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005;307:58–62.

    Article  CAS  PubMed  Google Scholar 

  • Jain RK, et al. Normalization of tumor vasculature and microenvironment. In: Figg WD, Folkman J, editors. Angiogenesis. New York: Springer; 2008. p. 273–81.

    Chapter  Google Scholar 

  • Kawamuara H, et al. VEGF signal transduction in angiogenesis. In: Figg WD, Folkman J, editors. Angiogenesis. New York: Springer; 2008. p. 205–16.

    Chapter  Google Scholar 

  • Kerbel RS, Ellis L. Angiogenesis. In: DeVita, Hellman, Rosenberg, editors. Cancer. Philadelphia: LWW; 2011. p. 101–12.

    Google Scholar 

  • McDonald D. Angiogenesis and vascular remodeling in inflammation and cancer: biology and architecture of the vasculature. In: Figg WD, Folkman J, editors. Angiogenesis. New York: Springer; 2008. p. 17–33.

    Chapter  Google Scholar 

  • Meadows K, Hurvitz H. Anti-VEGF therapies in the clinic. Cold Spring Harb Perspect Med. 2012;2:1–27.

    Article  Google Scholar 

  • Shibuya M. Vascular permeability/vascular endothelial growth factor. In: Figg WD, Folkman J, editors. Angiogenesis. New York: Springer; 2008. p. 89–98.

    Chapter  Google Scholar 

  • Shibuya M. VEGF and its receptor VEGFR signaling in angiogenesis: a crucial target for anti- and pro-angiogenic therapies. Genes Cancer. 2011;2:1097–105.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ulahannan SV, Brahmer JR. Antiangiogenic agents in combination with chemotherapy in patients with advanced non-small cell cancer. Cancer Invest. 2011;29:325–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanna Ulahannan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media, New York (outside the USA)

About this entry

Cite this entry

Ulahannan, S. (2017). VEGF. In: Marshall, J. (eds) Cancer Therapeutic Targets. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0717-2_71

Download citation

Publish with us

Policies and ethics