Skip to main content

VDR

  • Reference work entry
  • First Online:
Cancer Therapeutic Targets
  • 1877 Accesses

Abstract

Vitamin D is a steroid hormone which binds to the vitamin D receptor (VDR) and has been implicated in carcinogenesis. Pre-clinical data on the VDR demonstrates a direct correlation between the vitamin and cell growth, differentiation, and apoptosis. Through nuclear transcription as well as cytoplasmic pathway induction, binding of the active form of vitamin D, calcitriol, to the VDR has been shown to mechanistically affect multiple carcinogenic cell lines. Mouse models have been further utilized to demonstrate the in vivo effects of calcitriol and the VDR on tumorogenesis. While pre-clinical data supporting the potential of calcitriol as a cancer therapeutic agent abounds, evidence from clinical trials remains sparse. Most studies thus far do not clearly demonstrate a correlation between intermittent doses of calcitriol and decreased rates of development or recurrence of malignancy. However, few large clinical trials have been performed, and some of the smaller studies that have been done demonstrate decreases in cancer markers, fewer rates of progression, and rarely complete remissions. The inconsistent results suggest that our understanding of the potential anti-tumor effects of vitamin D is limited, and further clinical investigation is necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beer TM, Myrthue A, Eilers KM. Rationale for the development and current status of calcitriol in androgen-independent prostate cancer. World J Urol. 2005;23:28–32.

    Article  CAS  PubMed  Google Scholar 

  • Beer TM, Javle MM, et al. Phase I study of weekly DN-101, a new formulation of calcitriol, in patients with cancer. Cancer Chemother Pharmacol. 2007a;59(5):581–7.

    Article  CAS  PubMed  Google Scholar 

  • Beer TM, Ryan CW, et al. Double-blinded randomized study of high-dose calcitriol plus docetaxel compared with placebo plus docetaxel in androgen independent prostate cancer: a report from the ASCENT investigators. J Clin Oncol. 2007b;25(6):669–74.

    Article  CAS  PubMed  Google Scholar 

  • Carlberg C, Dunlop TW. The impact of chromatin organization of vitamin D target genes. Anticancer Res. 2006;26(4A):2637–45.

    CAS  PubMed  Google Scholar 

  • Chaudhry M, Sundaram S, et al. The vitamin D3 analog, ILX-23-7553, enhances the response to adriamycin and irradiation in MCF-7 breast tumor cells. Cancer Chemother Pharmacol. 2001;47(5):429–36.

    Article  CAS  PubMed  Google Scholar 

  • Dalhoff K, Dancey J, et al. A phase II study of the vitamin D analogue Seocalcitol in patients with inoperable hepatocellular carcinoma. Br J Cancer. 2003;89(2):252–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deeb KK, Trump DL, et al. Vitamin D signalling pathways in cancer: potential for anticancer therapeutics. Nat Rev Cancer. 2007;7(9):684–700.

    Article  CAS  PubMed  Google Scholar 

  • Eitenmiller RR, Ye L, Landen Jr WO. Vitamin analysis for the health and food sciences. 2nd ed. Florida: CRC Press; 2008. p. 83–112.

    Google Scholar 

  • Freedman DM, Chang SC, Falk RT, et al. Serum levels of vitamin D metabolites and breast cancer risk in the prostate, lung, colorectal, and ovarian cancer screening trial. Cancer Epidemiol Biomarkers Prev. 2008;17:889–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giovannucci E. The epidemiology of vitamin D. In: Trump DL, Johnson CS, editors. Vitamin D and cancer. New York: Springer; 2011. p. 73–97.

    Chapter  Google Scholar 

  • Goodwin PJ, Ennis M, et al. Prognostic effects of 25-hydroxyvitamin D levels in early breast cancer. J Clin Oncol. 2009;27(23):3757–63.

    Article  CAS  PubMed  Google Scholar 

  • Gross C, Stamey T, et al. Treatment of early recurrent prostate cancer with 1,25-dihydroxyvitamin D3 (calcitriol). J Urol. 1998;159(6):2035–9. discussion 2039–2040.

    Article  CAS  PubMed  Google Scholar 

  • Holick MF. Vitamin D status: measurement, interpretation and clinical application. Ann Epidemiol. 2009;19(2):73–8.

    Article  PubMed  Google Scholar 

  • Larriba MJ, Munoz A. Mechanisms of resistance to vitamin D action in human cancer cells. In: Holick MF, editor. Vitamin D: physiology, molecular biology, and clinical applications. New York: Humana Press; 2010. p. 325–33.

    Chapter  Google Scholar 

  • Ma Y, Yu WD, et al. 1alpha,25-dihydroxyvitamin D3 potentiates cisplatin antitumor activity by p73 induction in a squamous cell carcinoma model. Mol Cancer Ther. 2008;7(9):3047–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng K, Meyerhardt JA, et al. Circulating 25-hydroxyvitamin d levels and survival in patients with colorectal cancer. J Clin Oncol. 2008;26:2984–91.

    Article  CAS  PubMed  Google Scholar 

  • Osborn JL, Schwartz GG, et al. Phase II trial of oral 1,25-dihydroxyvitamin D (calcitriol) in hormone refractory prostate cancer. Urol Oncol. 1995;1(5):195–8.

    Article  CAS  PubMed  Google Scholar 

  • Reichrath J. Using vitamin D for management of human diseases. In: Hermann W, Obeid R, editors. Vitamins in the prevention of human disease. Homburg: De Gruyter; 2011. p. 399–407.

    Google Scholar 

  • Robsahm TE, Tretli S, Dahlback A, et al. Vitamin D3 from sunlight may improve the prognosis of breast, colon, and prostate cancer. Cancer Causes Control. 2004;15:149–58.

    Article  PubMed  Google Scholar 

  • Rustin GJ, Quinnell TG, et al. Trial of isotretinoin and calcitriol monitored by CA 125 in patients with ovarian cancer. Br J Cancer. 1996;74(9):1479–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scher HI, Jia X, et al. Randomized, open-label phase III trial of docetaxel plus high-dose calcitriol versus docetaxel plus prednisone for patients with castration-resistant prostate cancer. Clin Oncol. 2011;29(16):2191–8.

    Article  CAS  Google Scholar 

  • Swami S, Krishnan AV, et al. Dietary vitamin d3 and 1,25-dihydroxyvitamin d3 (calcitriol) exhibit equivalent anticancer activity in mouse xenograft models of breast and prostate cancer. Endocrinology. 2012;153(6):2576–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thorne J, Campbell MJ. The molecular cancer biology of the VDR. In: Trump DL, Johnson CS, editors. Vitamin D and cancer. New York: Springer; 2011. p. 25–52.

    Chapter  Google Scholar 

  • Trump DL, Deeb KK, et al. Vitamin D: considerations in the continued development as an agent for cancer prevention and therapy. Cancer J. 2010;16(1):1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webb GP. Dietary supplements and functional foods. 2nd ed. Oxford: Blackwell Publishing; 2011. p. 89–95.

    Book  Google Scholar 

  • Welsh J. Vitamin D and breast cancer: insights from animal models. Am J Clin Nutr. 2004;80(suppl):1721S–4.

    CAS  PubMed  Google Scholar 

  • Zhou W, Heist RS, Liu G, et al. Circulating 25-hydroxyvitamin D levels predict survival in early-stage non-small-cell lung cancer patients. J Clin Oncol. 2007;25(5):479–85.

    Article  CAS  PubMed  Google Scholar 

  • Zittermann A. Vitamin D: cholecalciferol. In: Hermann W, Obeid R, editors. Vitamins in the prevention of human disease. Homburg: De Gruyter; 2011. p. 363–95.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine D. Crew .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this entry

Cite this entry

Crew, K.D. (2017). VDR. In: Marshall, J. (eds) Cancer Therapeutic Targets. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0717-2_54

Download citation

Publish with us

Policies and ethics