Skip to main content

AKT

  • Reference work entry
  • First Online:
Cancer Therapeutic Targets
  • 1887 Accesses

Abstract

AKT, also known as protein kinase B and RAC-PK, was first discovered as an oncogene transduced by the acute transforming retrovirus (AKT-8), which is known to cause leukemia in mice. AKT is the major downstream target of phosphatidylinositol 3-kinase (PI3K), which can be activated by receptor tyrosine kinases in response to various growth factors. AKT is a serine/threonine kinase located at the apex of a cascade of signaling pathways. Deregulated AKT signaling is implicated in cancer cell growth, proliferation, and survival. Novel antitumor strategies have now been developed to target AKT and key downstream targets in the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andjelkovic M, Alessi DR, Meier R, et al. Role of translocation in the activation and function of protein kinase B. J Biol Chem. 1997;272:31515–24.

    Article  CAS  PubMed  Google Scholar 

  • Bellacosa A, Kumar CC, Di Cristofano A, Testa JR. Activation of AKT kinases in cancer: implications for therapeutic targeting. Adv Cancer Res. 2005;94:29–86.

    Article  CAS  PubMed  Google Scholar 

  • Bilodeau MT, Balitza AE, Hoffman JM, et al. Allosteric inhibitors of Akt1 and Akt2: a naphthyridinone with efficacy in an A2780 tumor xenograft model. Bioorg Med Chem Lett. 2008;18:3178–82.

    Article  CAS  PubMed  Google Scholar 

  • Broderick DK, Di C, Parrett TJ, et al. Mutations of PIK3CA in anaplastic oligodendrogliomas, high-grade astrocytomas, and medulloblastomas. Cancer Res. 2004;64:5048–50.

    Article  CAS  PubMed  Google Scholar 

  • Campbell IG, Russell SE, Choong DY, et al. Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res. 2004;64:7678–81.

    Article  CAS  PubMed  Google Scholar 

  • Courtney KD, Corcoran RB, Engelman JA. The PI3K pathway as drug target in human cancer. J Clin Oncol. 2010;28:1075–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Cosimo S, Bendell JC, Cervantes-Ruiperez A, et al. A phase I study of the oral mTOR inhibitor ridaforolimus (RIDA) in combination with the IGF-1R antibody dalotuzumab (DALO) in patients (pts) with advanced solid tumors. J Clin Oncol. 2010;28:15s. suppl; abstr 3008.

    Article  Google Scholar 

  • Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev. 2006;7:606–19.

    Article  CAS  Google Scholar 

  • Frech M, Andjelkovic M, Ingley E, Reddy KK, Falck JR, Hemmings BA. High affinity binding of inositol phosphates and phosphoinositides to the pleckstrin homology domain of RAC/protein kinase B and their influence on kinase activity. J Biol Chem. 1997;272:8474–81.

    Article  CAS  PubMed  Google Scholar 

  • Fresno Vara JA, Casado E, de Castro J, Cejas P, Belda-Iniesta C, Gonzalez-Baron M. PI3K/Akt signalling pathway and cancer. Cancer Treat Rev. 2004;30:193–204.

    Article  PubMed  Google Scholar 

  • Grimshaw KM, Hunter LJ, Yap TA, et al. AT7867 is a potent and oral inhibitor of AKT and p70 S6 kinase that induces pharmacodynamic changes and inhibits human tumor xenograft growth. Mol Cancer Ther. 2010;9:1100–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov. 2005;4:988–1004.

    Article  CAS  PubMed  Google Scholar 

  • Luo Y, Shoemaker AR, Liu X, et al. Potent and selective inhibitors of Akt kinases slow the progress of tumors in vivo. Mol Cancer Ther. 2005;4:977–86.

    Article  CAS  PubMed  Google Scholar 

  • Lyons J, Grimshaw K, Woodhead S, et al. AT13148, an orally bioavailable AKT kinase inhibitor with potent anti-tumor activity in both in vitro and in vivo models exhibiting AKT pathway deregulation. In: AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics Abstract B251; 2007; 2007.

    Google Scholar 

  • Maehama T, Dixon JE. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem. 1998;273:13375–8.

    Article  CAS  PubMed  Google Scholar 

  • Murthy SS, Tosolini A, Taguchi T, Testa JR. Mapping of AKT3, encoding a member of the Akt/protein kinase B family, to human and rodent chromosomes by fluorescence in situ hybridization. Cytogenet Cell Genet. 2000;88:38–40.

    Article  CAS  PubMed  Google Scholar 

  • Myers MP, Pass I, Batty IH, et al. The lipid phosphatase activity of PTEN is critical for its tumor suppressor function. Proc Natl Acad Sci U S A. 1998;95:13513–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhodes N, Heerding DA, Duckett DR, et al. Characterization of an Akt kinase inhibitor with potent pharmacodynamic and antitumor activity. Cancer Res. 2008;68:2366–74.

    Article  CAS  PubMed  Google Scholar 

  • Samuels Y, Wang Z, Bardelli A, et al. High frequency of mutations of the PIK3CA gene in human cancers. Science. 2004;304:554.

    Article  CAS  PubMed  Google Scholar 

  • Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 2005;307:1098–101.

    Article  CAS  PubMed  Google Scholar 

  • Sarker D, Workman P. Pharmacodynamic biomarkers for molecular cancer therapeutics. Adv Cancer Res. 2007;96:213–68.

    Article  CAS  PubMed  Google Scholar 

  • Shayesteh L, Lu Y, Kuo WL, et al. PIK3CA is implicated as an oncogene in ovarian cancer. Nat Genet. 1999;21:99–102.

    Article  CAS  PubMed  Google Scholar 

  • Soung YH, Lee JW, Nam SW, Lee JY, Yoo NJ, Lee SH. Mutational analysis of AKT1, AKT2 and AKT3 genes in common human carcinomas. Oncology. 2006;70:285–9.

    Article  CAS  PubMed  Google Scholar 

  • Tokunaga E, Kimura Y, Oki E, et al. Akt is frequently activated in HER2/neu-positive breast cancers and associated with poor prognosis among hormone-treated patients. Int J Cancer. 2006;118:284–9.

    Article  CAS  PubMed  Google Scholar 

  • Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer. 2002;2:489–501.

    Article  CAS  PubMed  Google Scholar 

  • Yang ZZ, Tschopp O, Baudry A, Dummler B, Hynx D, Hemmings BA. Physiological functions of protein kinase B/Akt. Biochem Soc Trans. 2004;32:350–4.

    Article  CAS  PubMed  Google Scholar 

  • Yap TA, Garrett MD, Walton MI, Raynaud F, de Bono JS, Workman P. Targeting the PI3K-AKT-mTOR pathway: progress, pitfalls, and promises. Curr Opin Pharmacol. 2008;8:393–412.

    Article  CAS  PubMed  Google Scholar 

  • Yap TA, Sandhu SK, Workman P, de Bono JS. Envisioning the future of early anticancer drug development. Nat Rev Cancer. 2010a;10(7):514–23, doi: 10.1038/nrc2870.

    Google Scholar 

  • Yap TA, Patnaik A, Fearen I, et al. First-in-class phase I trial of a selective Akt inhibitor, MK2206, evaluating alternate day and once weekly doses in advanced cancer patients with evidence of target modulation and antitumor activity. J Clin Oncol. 2010b;28:15s. suppl; abstr 3009.

    Google Scholar 

  • Yap TA, Walton MI, Hunter LJ, et al. Preclinical pharmacology, antitumor activity, and development of pharmacodynamic markers for the novel, potent AKT inhibitor CCT128930. Mol Cancer Ther. 2011;10:360–71.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy A. Yap .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this entry

Cite this entry

Yap, T.A., de Bono, J.S. (2017). AKT. In: Marshall, J. (eds) Cancer Therapeutic Targets. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0717-2_35

Download citation

Publish with us

Policies and ethics