Skip to main content

P53, Immunology

  • Reference work entry
  • First Online:
Cancer Therapeutic Targets

Abstract

P53 is one of the most frequently mutated suppressor genes in human cancers. P53 normally functions as a transcription factor that is stabilized and activated by various genotoxic and cellular stress signals leading to the cell cycle arrest and apoptosis of damaged cells. P53 is often referred to as “the guardian of the genome.” In most cancers, p53 becomes functionally deficient. In addition, mutant p53 may acquire dominant negative activity and oncogenic properties. P53 remains an attractive target for cancer therapy, and strategies for targeting p53 include gene therapy to restore its functions, inhibition of p53-MDM2 interaction, restoration of wild-type p53, p53 based vaccines and targeting of the p53 family of proteins. Some of these therapies are in clinical trials. Novel strategies for p53-targeted therapy are under development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrade Filho PA, Ito D, Deleo AB, Ferris RL. CD8+ T cell recognition of polymorphic wild-type sequence p53(67-73) peptides in squamous cell carcinoma of the head and neck. CII. 2010;59:1561–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Antonia SJ, Mirza N, Fricke I, Chiappori A, Thompson P, Williams N, Bepler G, Simon G, Janssen W, Lee JH, Menander K, Chada S, Gabrilovich DI. Combination of p53 cancer vaccine with chemotherapy in patients with extensive stage small cell lung cancer. Clin Cancer Res. 2006;12:878–87.

    Article  CAS  PubMed  Google Scholar 

  • Balz V, Scheckenbach K, Gotte K, Bockmuhl U, Petersen I, Bier H. Is the p53 inactivation frequency in squamous cell carcinomas of the head and neck underestimated? Analysis of p53 exons 2–11 and human papillomavirus 16/18 E6 transcripts in 123 unselected tumor specimens. Cancer Res. 2003;63:1188–91.

    CAS  PubMed  Google Scholar 

  • Bo Hong A, Van den Heuvel PJ, Prabhu VV, Zhang S, El-Deiry WS. Targeting tumor suppressor p53 for cancer therapy: strategies, challenges and opportunities. Curr Drug Targets. 2014;15:80–9.

    Article  PubMed  Google Scholar 

  • Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP, Sedivy JM, Kinzler KW, Vogelstein B. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science. 1998;282:1497–501.

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Wang W, El-Deiry WS. Current strategies to target p53 in cancer. Biochem Pharmacol. 2010;80:724–30.

    Article  CAS  PubMed  Google Scholar 

  • Cheok CF, Verma CS, Baselga J, Lane DP. Translating p53 into the clinic. Nat Rev Clin Oncol. 2011;8:25–37.

    Article  CAS  PubMed  Google Scholar 

  • DeLeo AB, Whiteside TL. Development of multi-epitope vaccines targeting wild-type sequence p53 peptides. Expert Rev Vaccines. 2008;7:1031–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferraiuolo M, Di Agostino S, Blandino G, Strano S. Oncogenic intra-p53 family member interactions in human cancers. Front Oncol. 2016;6(77):1–10.

    Google Scholar 

  • Hansen JE, Fischer LK, Chan G, Chang SS, Baldwin SW, Aragon RJ, Carter JJ, Lilly M, Nishimura RN, Weisbart RH, Reeves ME. Antibody-mediated p53 protein therapy prevents liver metastasis in vivo. Cancer Res. 2007;67:1769–74.

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann TK, Donnenberg AD, Finkelstein SD, et al. Frequencies of tetramer+ T cells specific for the wild-type sequence p53 264–272 peptide in the circulation of patients with head and neck cancer. Cancer Res. 2002;62:3521–9.

    CAS  PubMed  Google Scholar 

  • Hoffmann TK, Sonkoly E, Hauser U, van Lierop A, Whiteside TL, Klussmann JP, Hafner D, Schuler P, Friebe-Hoffmann U, Scheckenbach K, Erjala K, Grénman R, Schipper J, Bier H, Balz V. Alterations in the p53 pathway and their association with radio- and chemosensitivity in head and neck squamous cell carcinoma. Oral Oncol. 2008;44:1100–9.

    Article  CAS  PubMed  Google Scholar 

  • Hong WK, Bast Jr RC, Hait W, Kufe DW, Pollock RE, Weichselbaum RR, Holland JF, Frei III E, editors. Holland-Frei cancer medicine. 8th ed. Shelton: People’s Medical Publishing House-USA; 2010.

    Google Scholar 

  • Ito D, Visus C, Hoffmann TK, Balz V, Bier H, Appella E, Whiteside TL, Ferris RL, DeLeo AB. Immunological characterization of missense mutations occurring within cytotoxic T cell-defined p53 epitopes in HLA-A*0201+ squamous cell carcinomas of the head and neck. Int J Cancer. 2007;120:2618–24.

    Article  CAS  PubMed  Google Scholar 

  • Lauwen MM, Zwaveling S, de Quartel L, et al. Self-tolerance does not restrict the CD4+ T-helper response against the p53 tumor antigen. Cancer Res. 2008;68:893–900.

    Article  CAS  PubMed  Google Scholar 

  • Leffers N, Lambeck AJ, Gooden MJ, Hoogeboom BN, Wolf R, Hamming IE, Hepkema BG, Willemse PH, Molmans BH, Hollema H, Drijfhout JW, Sluiter WJ, Valentijn AR, Fathers LM, Oostendorp J, van der Zee AG, Melief CJ, van der Burg SH, Daemen T, Nijman HW. Immunization with a P53 synthetic long peptide vaccine induces P53-specific immune responses in ovarian cancer patients, a phase II trial. Int J Cancer. 2009;125:2104–13.

    Article  CAS  PubMed  Google Scholar 

  • Levine AJ, Oren M. The first 30 years of p53: growing ever more complex. Nat Rev Cancer. 2009;9:749–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandinova A, Lee SW. The p53 pathway as a target in cancer therapeutics: obstacles and promise. Sci Transl Med. 2011;3:1–7.

    Article  Google Scholar 

  • Masciarelli S, Fontemaggi G, Di Agostino S, et al. Gain-of-function mutant p53 downregulates miR-223 contributing to chemoresistance of cultured tumor cells. Oncogene. 2014;33:1601–8.

    Article  CAS  PubMed  Google Scholar 

  • Mayordomo JI, Loftus DJ, Sakamoto HJ, DeCesare CM, Appasamy PM, Lotze MT, Storkus WJ, Appella E, DeLeo AB. Therapy of murine tumors with p53 wild type and mutant sequence peptide-based vaccines. J Exp Med. 1996;183:1357–65.

    Article  CAS  PubMed  Google Scholar 

  • Olivier M, Petitjean A, Marcel V, Pétré A, Mounawar M, Plymoth A, de Fromentel CC, Hainaut P. Recent advances in p53 research: an interdisciplinary perspective. Cancer Gene Ther. 2009;16:1–12.

    Article  CAS  PubMed  Google Scholar 

  • Petitjean A, Achatz MI, Borresen-Dale AL, Hainaut P, Olivier M. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene. 2007;26:2157–65.

    Article  CAS  PubMed  Google Scholar 

  • Poeta ML, Manola J, Goldenberg D, Forastiere A, Califano JA, Ridge JA, Goodwin J, Kenady D, Saunders J, Westra W, Sidransky D, Koch WM. The ligamp TP53 assay for detection of minimal residual disease in head and neck squamous cell carcinoma surgical margins. Clin Cancer Res. 2009;15:7658–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao CV, Swamy MV, Patlolla JM, Kopelovich L. Suppression of familial adenomatous polyposis by CP-31398, a TP53 modulator, in APCmin/+ mice. Cancer Res. 2008;68:7670–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sangrajrang S, Arpornwirat W, Cheirsilpa A, Thisuphakorn P, Kalalak A, Sornprom A, Soussi T. Serum p53 antibodies in correlation to other biological parameters of breast cancer. Cancer Detect Prev. 2003a;27:182–6.

    Article  CAS  PubMed  Google Scholar 

  • Sangrajrang S, Sornprom A, Chernrungroj G, Soussi T. Serum p53 antibodies in patients with lung cancer: correlation with clinicopathologic features and smoking. Lung Cancer. 2003b;39:297–301.

    Article  PubMed  Google Scholar 

  • Soussi T. Focus on the p53 gene and cancer: advances in TP53 mutation research. Hum Mutat. 2003a;21:173–5.

    Article  PubMed  Google Scholar 

  • Soussi T. p53 mutations and resistance to chemotherapy: a stab in the back for p73. Cancer Cell. 2003b;3:303–5.

    Article  CAS  PubMed  Google Scholar 

  • Speetjens FM, Kuppen PJ, Welters MJ, Essahsah F, Voet van den Brink AM, Lantrua MG, Valentijn AR, Oostendorp J, Fathers LM, Nijman HW, Drijfhout JW, van de Velde CJ, Melief CJ, van der Burg SH. Induction of p53-specific immunity by a p53 synthetic long peptide vaccine in patients treated for metastatic colorectal cancer. Clin Cancer Res. 2009;15:1086–95.

    Article  CAS  PubMed  Google Scholar 

  • Stegh AH. Targeting the p53 signaling pathway in cancer therapy the promises, challenges and perils. Exp Opin Ther Targets. 2012;16:67–83.

    Article  CAS  Google Scholar 

  • Tang X, Zhu Y, Han L, Kim AL, Kopelovich L, Bickers DR, Athar M. CP-31398 restores mutant p53 tumor suppressor function and inhibits UVB-induced skin carcinogenesis in mice. J Clin Invest. 2007;117:3753–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theobald M, Biggs J, Hernandez J, Lustgarten J, Labadie C, Sherman LA. Tolerance to p53 by A2.1-restricted cytotoxic T lymphocytes. J Exp Med. 1997;185:833–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theoret MR, Cohen CJ, Nahvi AV, Ngo LT, Suri KB, Powell Jr DJ, Dudley ME, Morgan RA, Rosenberg SA. Relationship of p53 overexpression on cancers and recognition by anti-p53 T cell receptor-transduced T cells. Hum Gene Ther. 2008;19:1219–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vierboom MP, Nijman HW, Offringa R, et al. Tumor eradication by wild-type p53-specific cytotoxic T lymphocytes. J Exp Med. 1997;186:695–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weill CO, Biri S, Adib A, Erbacher P. A practical approach for intracellular protein delivery. Cytotechnology. 2008;56:41–8.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Liu L, Gomez-Casal R, Wang X, Havashi R, Appella E, Kopelovich L, DeLeo AB. Targeting cancer stem cells with p53 modulators. Oncotarget. 2016. doi:10.18632/oncotarget. 8650. [Epub ahead of print]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert DeLeo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this entry

Cite this entry

DeLeo, A., Whiteside, T.L. (2017). P53, Immunology. In: Marshall, J. (eds) Cancer Therapeutic Targets. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0717-2_30

Download citation

Publish with us

Policies and ethics