Skip to main content

FGF-FGFR Signaling in Cancer

  • Reference work entry
  • First Online:
Cancer Therapeutic Targets
  • 1861 Accesses

Abstract

Fibroblast growth factors (FGF) have pleiotropic roles in human development and metabolism, and FGF signaling through FGF receptors (FGFRs) has been implicated in a wide range of cancers. Extensive pre-clinical and clinical studies are currently underway to elucidate the therapeutic possibilities: monoclonal antibodies, ligand traps, heparanoids, and kinase inhibitors all have potential for the treatment of FGFR-driven cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Beenken A, Mohammadi M. The FGF family: biology, phathophysiology, and therapy. Nat Rev Drug Discov. 2009;8:235–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beenken A, Mohammadi M. The molecular bases for FGF receptor activation in craniosynostosis and dwarfism syndromes. In: Muenke M, Kress W, Collmann H, Solomon BD, editors. Craniosynostoses: molecular genetics, principles of diagnosis, and treatment. Basel: Karger; 2011;45–57.

    Google Scholar 

  • Beenken A, Mohammadi M. The structural biology of the FGF19 subfamily. In: Kuro-o M, editor. Endocrine FGFs and Klothos. Austin, Texas: Landes Bioscience; Adv Exp Med Biol. 2012;728:1–24.

    Google Scholar 

  • Dailey L, Ambrosetti D, Mansukhani A, Basilico C. Mechanisms underlying differential responses to FGF signaling. Cytokine Growth Factor Rev. 2005;16:233–47.

    Article  CAS  PubMed  Google Scholar 

  • Eswarakumar VP, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 2005;16:139–49.

    Article  CAS  PubMed  Google Scholar 

  • Ezzat S, Zheng L, Yu S, Asa SL. A soluble dominant negative fibroblast growth factor receptor 4 isoform in human MCF-7 breast cancer cells. Biochem Biophys Res Commun. 2001;287:60–5.

    Article  CAS  PubMed  Google Scholar 

  • Fan J, Hitosugi T, Chung TW, Xie J, Ge Q, Gu TL, Polakiewicz RD, Chen GZ, Boggon TJ, Lonial S, Khuri FR, Kang S, Chen J. Tyrosine phosphorylation of lactate dehydrogenase A is important for NADH/NAD(+) redox homeostasis in cancer cells. Mol Cell Biol. 2011;31:4938–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • French DM, Lin BC, Wang M, Adams C, Shek T, Hotzel K, Bolon B, Ferrando R, Blackmore C, Schroeder K, Rodriguez LA, Hristopoulos M, Venook R, Ashkenazi A, Desnoyers LR. Targeting FGFR4 inhibits hepatocellular carcinoma in preclinical mouse models. PLoS One. 2012;7:e36713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goetz R, Mohammadi M. Exploring mechanisms of FGF signalling through the lens of structural biology. Nat Rev Mol Cell Biol. 2013;14:166–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gotoh N. Regulation of growth factor signaling by FRS2 family docking/scaffold adaptor proteins. Cancer Sci. 2008;99:1319–25.

    Article  CAS  PubMed  Google Scholar 

  • Hitosugi T, Kang S, Vander Heiden MG, Chung TW, Elf S, Lythgoe K, Dong S, Lonial S, Wang X, Chen GZ, Xie J, Gu TL, Polakiewicz RD, Roesel JL, Boggon TJ, Khuri FR, Gilliland DG, Cantley LC, Kaufman J, Chen J. Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci Signal. 2009;2, ra73.

    Google Scholar 

  • Johnson DE, Lu J, Chen H, Werner S, Williams LT. The human fibroblast growth factor receptor genes: a common structural arrangement underlies the mechanisms for generating receptor forms that differ in their third immunoglobulin domain. Mol Cell Biol. 1991;11:4627–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KB, Chesney J, Robinson D, Gardner H, Shi MM, Kirkwood JM. Phase I/II and pharmacodynamic study of dovitinib (TKI258), an inhibitor of fibroblast growth factor receptors and VEGF receptors, in patients with advanced melanoma. Clin Cancer Res Off J Am Assoc Cancer Res. 2011;17:7451–61.

    Article  CAS  Google Scholar 

  • Knights V, Cook SJ. De-regulated FGF receptors as therapeutic targets in cancer. Pharmacol Ther. 2010;125:105–17.

    Article  CAS  PubMed  Google Scholar 

  • Kuro-o M. Endocrine FGFs and Klothos: emerging concepts. Trends Endocrinol Metab. 2008;19:239–45.

    Article  CAS  PubMed  Google Scholar 

  • Martin GR. The roles of FGFs in the early development of vertebrate limbs. Genes Dev. 1998;12:1571–86.

    Article  CAS  PubMed  Google Scholar 

  • Miyake M, Sugano K, Sugino H, Imai K, Matsumoto E, Maeda K, Fukuzono S, Ichikawa H, Kawashima K, Hirabayashi K, Kodama T, Fujimoto H, Kakizoe T, Kanai Y, Fujimoto K, Hirao Y. Fibroblast growth factor receptor 3 mutation in voided urine is a useful diagnostic marker and significant indicator of tumor recurrence in non-muscle invasive bladder cancer. Cancer Sci. 2010;101:250–8.

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi M, Olsen SK, Ibrahimi OA. Structural basis for fibroblast growth factor receptor activation. Cytokine Growth Factor Rev. 2005a;16:107–37.

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi M, Olsen SK, Goetz R. A protein canyon in the FGF-FGF receptor dimer selects from an à la carte menu of heparan sulfate motifs. Curr Opin Struct Biol. 2005b;15:506–16.

    Article  CAS  PubMed  Google Scholar 

  • Ornitz DM. FGF signaling in the developing endochondral skeleton. Cytokine Growth Factor Rev. 2005;16:205–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qing J, Du X, Chen Y, Chan P, Li H, Wu P, Marsters S, Stawicki S, Tien J, Totpal K, Ross S, Stinson S, Dornan D, French D, Wang QR, Stephan JP, Wu Y, Wiesmann C, Ashkenazi A. Antibody-based targeting of FGFR3 in bladder carcinoma and t(4;14)-positive multiple myeloma in mice. J Clin Invest. 2009;119:1216–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawey ET, Chanrion M, Cai C, Wu G, Zhang J, Zender L, Zhao A, Busuttil RW, Yee H, Stein L, French DM, Finn RS, Lowe SW, Powers S. Identification of a therapeutic strategy targeting amplified FGF19 in liver cancer by Oncogenomic screening. Cancer Cell. 2011;19:347–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2000;103:211–25.

    Article  CAS  PubMed  Google Scholar 

  • Seo JH, Suenaga A, Hatakeyama M, Taiji M, Imamoto A. Structural and functional basis of a role for CRKL in a fibroblast growth factor 8-induced feed-forward loop. Mol Cell Biol. 2009;29:3076–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spielberger R, Stiff P, Bensinger W, Gentile T, Weisdorf D, Kewalramani T, Shea T, Yanovich S, Hansen K, Noga S, McCarty J, LeMaistre CF, Sung EC, Blazar BR, Elhardt D, Chen MG, Emmanouilides C. Palifermin for oral mucositis after intensive therapy for hematologic cancers. N Engl J Med. 2004;351:2590–8.

    Article  CAS  PubMed  Google Scholar 

  • Turner N, Grose R. Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer. 2010;10:116–29.

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Venkatesh M, Li H, Goetz R, Mukherjee S, Biswas A, Zhu L, Kaubisch A, Wang L, Pullman J, Whitney K, Kuro-o M, Roig AI, Shay JW, Mohammadi M, Mani S. Pregnane X receptor activation induces FGF19-dependent tumor aggressiveness in humans and mice. J Clin Invest. 2011;121:3220–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkie AO. Bad bones, absent smell, selfish testes: the pleiotropic consequences of human FGF receptor mutations. Cytokine Growth Factor Rev. 2005;16:187–203.

    Article  CAS  PubMed  Google Scholar 

  • Yilmaz M, Christofori G. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev. 2009;28:15–33.

    Article  PubMed  Google Scholar 

  • Yu X, White KE. FGF23 and disorders of phosphate homeostasis. Cytokine Growth Factor Rev. 2005;16:221–32.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moosa Mohammadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this entry

Cite this entry

Mohammadi, M., Beenken, A. (2017). FGF-FGFR Signaling in Cancer. In: Marshall, J. (eds) Cancer Therapeutic Targets. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0717-2_19

Download citation

Publish with us

Policies and ethics