Skip to main content

Whole-Cell Vaccines

  • Reference work entry
  • First Online:
  • 1854 Accesses

Abstract

Therapeutic cancer vaccines aim to generate tumor immunity through coordinated cell- and antibody-mediated responses that ultimately result in highly specific and potent T cells capable of destroying cancers. Cancer vaccines have unique advantages compared to most other cancer therapeutics, with a high degree of specificity for tumor cells relative to normal tissues, a highly favorable side-effect profile, and the potential for a long-lasting treatment effect due to immunologic memory.

Conflict of Interest

Under a licensing agreement between Aduro, Incorporated and Johns Hopkins University, the University is entitled to milestone payments and royalty on sales of the GM-CSF-secreting vaccines. The terms of these arrangements are being managed by Johns Hopkins University in accordance with its conflict of interest policies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Banchereau J, Palucka AK. Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol. 2005;5:296–306.

    Article  CAS  PubMed  Google Scholar 

  • Brahmer JR, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366:2455–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Gruijl TD, et al. Whole-cell cancer vaccination: from autologous to allogeneic tumor- and dendritic cell-based vaccines. Cancer Immunol Immunother. 2008;57:1569–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dranoff G, et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci U S A. 1993;90:3539–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emens LA. GM-CSF-secreting vaccines for solid tumors. Curr Opin Invest Drugs. 2009;10:1315–24.

    CAS  Google Scholar 

  • Emens LA. Chemoimmunotherapy. Cancer J. 2010;16:295–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emens LA, Jaffee EM. Cancer vaccines: an old idea comes of age. Cancer Biol Ther. 2003;2(4)Suppl 1:S161–8.

    Google Scholar 

  • Emens et al. Cancer vaccines in combination with multimodality therapy. Cancer Treat Res. 2005;123:227–45.

    Google Scholar 

  • Emens LA, et al. Timed sequential treatment with cyclophosphamide, doxorubicin, and an allogeneic granulocyte-macrophage colony-stimulating factor-secreting breast tumor vaccine: a chemotherapy dose-ranging factorial study of safety and immune activation. J Clin Oncol. 2009;27:5911–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emens LA, et al. Toward integrative cancer immunotherapy: targeting the tumor microenvironment. J Transl Med. 2012;10:70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferris RL, et al. Tumor antigen-targeted, monoclonal antibody-based immunotherapy: clinical response, cellular immunity, and immunoescape. J Clin Oncol. 2010;28:4390–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta R, Emens LA. GM-CSF-secreting vaccines for solid tumors: moving forward. Discov Med. 2010;10:52–60.

    PubMed  PubMed Central  Google Scholar 

  • Higano CS, et al. Integrated data from 2 randomized, double-blind, placebo-controlled phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer. 2009;155:3670–9.

    Article  Google Scholar 

  • Hodi FS, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kantoff PW, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363:411–22.

    Article  CAS  PubMed  Google Scholar 

  • Laheru DA, et al. Allogeneic granulocyte-macrophage colony-stimulating factor-secreting tumor immunotherapy alone or in sequence with cyclophosphamide for metastatic pancreatic cancer: a pilot study of safety, feasibility, and immune activation. Clin Cancer Res. 2008;14:1455–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le DT, et al. Evaluation of ipilimumab in combination with allogeneic pancreatic tumor cells transfected with a GM-CSF gene in previously treated pancreatic cancer. J Immunother. 2013;36:382–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lutz ER, et al. A lethally-irradiated allogeneic granulocyte-macrophage colony-stimulating factor-secreting tumor vaccine for pancreatic adenocarcinoma: a phase II trial of safety, efficacy, and immune activation. Ann Surg. 2011;253:328–35.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pardoll DM. Spinning molecular immunology into successful immunotherapy. Nat Rev Immunol. 2002;2:227–38.

    Article  CAS  PubMed  Google Scholar 

  • Robert C, et al. Ipilimumab plus dacarbazine for previously treated metastatic melanoma. N Engl J Med. 2011;364:2517–26.

    Article  CAS  PubMed  Google Scholar 

  • Santegoets SJ, et al. T cell profiling reveals high CD4+CTLA-4+ T cell frequency as dominant predictor for survival after prostate GVAX/ipilimumab treatment. Cancer Immunol Immunother. 2013;62:245–55.

    Article  CAS  PubMed  Google Scholar 

  • Schadendorf D, et al. Dacarbazine (DTIC) versus vaccination with autologous peptide-pulsed dendritic cells (DC) in first-line treatment of patients with metastatic melanoma: a randomized phase III trial of the DC study group of the DeCOG. Ann Oncol. 2006;17:563–70.

    Article  CAS  PubMed  Google Scholar 

  • Topalian SL, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van den Eertwegh AJ, et al. Combined immunotherapy with granulocyte-macrophage colony-stimulating factor-transduced allogeneic prostate cancer cells and ipilimumab in patients with metastatic castration-resistant prostate cancer: a phase I dose-escalation trial. Lancet Oncol. 2012;13:509–17.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leisha A. Emens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this entry

Cite this entry

Jelovac, D., Emens, L.A. (2017). Whole-Cell Vaccines. In: Marshall, J. (eds) Cancer Therapeutic Targets. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0717-2_148

Download citation

Publish with us

Policies and ethics