Skip to main content

DNA Vaccines

  • Reference work entry
  • First Online:
Cancer Therapeutic Targets
  • 1889 Accesses

Abstract

Immune based approaches to the treatment of cancer have demonstrated remarkable success in recent years. Many of these approaches, including T cell checkpoint inhibitors and adoptive T cell therapies, aim to amplify or modify the function of lymphocytes specific for tumor cells. Given this success, there has been renewed interest in the use of active immunotherapies, or vaccines, to generate and/or amplify tumor target-specific immunity, as these types of treatments are well poised to combine with other immune modulating therapies. While many anti-tumor vaccine approaches are being investigated, DNA vaccines offer particular advantages in terms of ease and cost of manufacturing, stability, and absence of infectious components. DNA vaccines have been approved as therapies for non-human diseases, including canine melanoma. However, early clinical trials in human patients were disappointing, with limited clinical responses. Since those initial studies many advances have been made in regards to the delivery and efficacy of DNA vaccines, seeking to enhance their therapeutic efficacy. Second generation vaccines are now undergoing clinical evaluation targeting a variety of antigens and in a variety of different approaches. We review here this approach specifically as an anti-cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad S, Sweeney P, Sullivan GC, Tangney M. DNA vaccination for prostate cancer, from preclinical to clinical trials – where we stand? Genet Vaccin Ther. 2012;10:9.

    Article  CAS  Google Scholar 

  • Amara RR, Villinger F, Staprans SI, Altman JD, Montefiori DC, Kozyr NL, et al. Different patterns of immune responses but similar control of a simian-human immunodeficiency virus 89.6P mucosal challenge by modified vaccinia virus Ankara (MVA) and DNA/MVA vaccines. J Virol. 2002;76:7625–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berglund P, Smerdou C, Fleeton MN, Tubulekas I, Liljeström P. Enhancing immune responses using suicidal DNA vaccines. Nat Biotechnol. 1998;16:562–5.

    Article  CAS  PubMed  Google Scholar 

  • Bergman PJ, McKnight J, Novosad A, Charney S, Farrelly J, Craft D, et al. Long-term survival of dogs with advanced malignant melanoma after DNA vaccination with xenogeneic human tyrosinase a phase I trial. Clin Cancer Res. 2003;9:1284–90.

    CAS  PubMed  Google Scholar 

  • Berkhout B, Verhoef K, van Wamel JLB, Back NKT. Genetic instability of live, attenuated human immunodeficiency virus type 1 vaccine strains. J Virol. 1999;73:1138–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bilusic M, Gulley JL. Endpoints, patient selection, and biomarkers in the design of clinical trials for cancer vaccines. Cancer Immunol Immunother CII. 2012;61:109–17.

    Article  PubMed  Google Scholar 

  • Cassaday RD, Sondel PM, King DM, Macklin MD, Gan J, Warner TF, et al. A phase I study of immunization using particle-mediated epidermal delivery of genes for gp100 and GM-CSF into uninvolved skin of melanoma patients. Clin Cancer Res. 2007;13:540–9.

    Article  CAS  PubMed  Google Scholar 

  • Castaldello A, Sgarbanti M, Marsili G, Brocca-Cofano E, Remoli AL, Caputo A, et al. Interferon regulatory factor-1 acts as a powerful adjuvant in tat DNA based vaccination. J Cell Physiol. 2010;224:702–9.

    Article  CAS  PubMed  Google Scholar 

  • Chapman BS, Thayer RM, Vincent KA, Haigwood NL. Effect of intron A from human cytomegalovirus (Towne) immediate-early gene on heterologous expression in mammalian cells. Nucleic Acids Res. 1991;19:3979–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheever MA, Allison JP, Ferris AS, Finn OJ, Hastings BM, Hecht TT, et al. The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res. 2009;15:5323–37.

    Article  PubMed  Google Scholar 

  • Coban C, Ishii KJ, Gursel M, Klinman DM, Kumar N. Effect of plasmid backbone modification by different human CpG motifs on the immunogenicity of DNA vaccine vectors. J Leukoc Biol. 2005;78:647–55.

    Article  CAS  PubMed  Google Scholar 

  • Coban C, Kobiyama K, Aoshi T, Takeshita F, Horii T, Akira S, et al. Novel strategies to improve DNA vaccine immunogenicity. Curr Gene Ther. 2011;11:479–84.

    Article  CAS  PubMed  Google Scholar 

  • Conry RM, Curiel DT, Strong TV, Moore SE, Allen KO, Barlow DL, et al. Safety and immunogenicity of a DNA vaccine encoding carcinoembryonic antigen and hepatitis B surface antigen in colorectal carcinoma patients. Clin Cancer Res. 2002;8:2782–7.

    CAS  PubMed  Google Scholar 

  • Cukjati D, Batiuskaite D, André F, Miklavcic D, Mir LM. Real time electroporation control for accurate and safe in vivo non-viral gene therapy. Bioelectrochemistry (Amst Neth). 2007;70:501–7.

    Article  CAS  Google Scholar 

  • Disis ML, Shiota FM, McNeel DG, Knutson KL. Soluble cytokines can act as effective adjuvants in plasmid DNA vaccines targeting self tumor antigens. Immunobiology. 2003;207:179–86.

    Article  CAS  PubMed  Google Scholar 

  • Epstein SL, Tumpey TM, Misplon JA, Lo C-Y, Cooper LA, Subbarao K, et al. DNA vaccine expressing conserved Influenza virus proteins protective against H5N1 Challenge infection in mice. Emerg Infect Dis. 2002;8:796–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferraro B. Clinical applications of DNA vaccines: current progress. Clin Infect Dis. 2011;53:296–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiorino F, Pettini E, Pozzi G, Medaglini D, Ciabattini A. Prime-boost strategies in mucosal immunization affect local IgA production and the type of Th response. Front Immunol [Internet]. 2013 May 29 [cited 2014 Aug 12];4. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3665932/

  • Galvin TA, Muller J, Khan AS. Effect of different promoters on immune responses elicited by HIV-1 gag/env multigenic DNA vaccine in Macaca mulatta and Macaca nemestrina. Vaccine. 2000;18:2566–83.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Hernandez Mde la L, Gray A, Hubby B, Klinger OJ, Kast WM. Prostate stem cell antigen vaccination induces a long-term protective immune response against prostate cancer in the absence of autoimmunity. Cancer Res. 2008;68:861–9.

    Article  Google Scholar 

  • Gehl J. Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol Scand. 2003;177:437–47.

    Article  CAS  PubMed  Google Scholar 

  • Gilbert SC, Schneider J, Hannan CM, Hu JT, Plebanski M, Sinden R, et al. Enhanced CD8 T cell immunogenicity and protective efficacy in a mouse malaria model using a recombinant adenoviral vaccine in heterologous prime-boost immunisation regimes. Vaccine. 2002;20:1039–45.

    Article  CAS  PubMed  Google Scholar 

  • Gill HS, Soderholm J, Prausnitz MR, Sallberg M. Cutaneous vaccination using microneedles coated with hepatitis C DNA vaccine. Gene Ther. 2010;17:811–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ginsberg BA, Gallardo HF, Rasalan TS, Adamow M, Mu Z, Tandon S, et al. Immunologic response to xenogeneic gp100 DNA in melanoma patients: comparison of particle-mediated epidermal delivery with intramuscular injection. Clin Cancer Res. 2010;16:4057–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gnjatic S, Altorki NK, Tang DN, Tu S-M, Kundra V, Ritter G, et al. NY-ESO-1 DNA vaccine induces T-cell responses that are suppressed by regulatory T cells. Clin Cancer Res. 2009;15:2130–9.

    Article  CAS  PubMed  Google Scholar 

  • Goldberg SM, Bartido SM, Gardner JP, Guevara-Patiño JA, Montgomery SC, Perales M-A, et al. Comparison of two cancer vaccines targeting tyrosinase: plasmid DNA and recombinant alphavirus replicon particles. Clin Cancer Res. 2005;11:8114–21.

    Article  CAS  PubMed  Google Scholar 

  • Graham BS, Enama ME, Nason MC, Gordon IJ, Peel SA, Ledgerwood JE, et al. DNA vaccine delivered by a needle-free injection device improves potency of priming for antibody and CD8+ T-cell responses after rAd5 boost in a randomized clinical trial. PLoS One. 2013;8:e59340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, et al. A toll-like receptor recognizes bacterial DNA. Nature. 2000;408:740–5.

    Article  CAS  PubMed  Google Scholar 

  • Huang MT, Gorman CM. Intervening sequences increase efficiency of RNA 3′ processing and accumulation of cytoplasmic RNA. Nucleic Acids Res. 1990;18:937–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishii KJ, Kawagoe T, Koyama S, Matsui K, Kumar H, Kawai T, et al. TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines. Nature. 2008;451:725–9.

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa H, Barber GN. STING an endoplasmic reticulum adaptor that facilitates innate immune signaling. Nature. 2008;455:674–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao S, Cheng L, Wolff JA, Yang N-S. Particle bombardment-mediated gene transfer and expression in rat brain tissues. Nat Biotechnol. 1993;11:497–502.

    Article  CAS  Google Scholar 

  • Khan KH. DNA vaccines: roles against diseases. Germs. 2013;3:26–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kojima Y, Xin K-Q, Ooki T, Hamajima K, Oikawa T, Shinoda K, et al. Adjuvant effect of multi-CpG motifs on an HIV-1 DNA vaccine. Vaccine. 2002;20:2857–65.

    Article  CAS  PubMed  Google Scholar 

  • Kozak M. An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 1987;15:8125–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozak M. Downstream secondary structure facilitates recognition of initiator codons by eukaryotic ribosomes. Proc Natl Acad Sci U S A. 1990;87:8301–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozak M. An analysis of vertebrate mRNA sequences: intimations of translational control. J Cell Biol. 1991;115:887–903.

    Article  CAS  PubMed  Google Scholar 

  • Kozak M. Recognition of AUG and alternative initiator codons is augmented by G in position +4 but is not generally affected by the nucleotides in positions +5 and +6. EMBO J. 1997;16:2482–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwissa M, von Kampen v K, Zurbriggen R, Glück R, Reimann J, Schirmbeck R. Efficient vaccination by intradermal or intramuscular inoculation of plasmid DNA expressing hepatitis B surface antigen under desmin promoter/enhancer control. Vaccine. 2000;18:2337–44.

    Article  CAS  PubMed  Google Scholar 

  • La Cava A, Billetta R, Gaietta G, Bonnin DB, Baird SM, Albani S. Cell-mediated DNA transport between distant inflammatory sites following intradermal DNA immunization in the presence of adjuvant. J Immunol Baltim Md 1950. 2000;164:1340–5.

    CAS  Google Scholar 

  • Lanoix J, Acheson NH. A rabbit beta-globin polyadenylation signal directs efficient termination of transcription of polyomavirus DNA. EMBO J. 1988;7:2515–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ledwith BJ, Manam S, Troilo PJ, Barnum AB, Pauley CJ, Griffiths II TG, et al. Plasmid DNA vaccines: investigation of integration into host cellular DNA following intramuscular injection in mice. Intervirology. 2000;43:258–72.

    Article  CAS  PubMed  Google Scholar 

  • Liu MA. DNA vaccines: an historical perspective and view to the future. Immunol Rev. 2011;239:62–84.

    Article  CAS  PubMed  Google Scholar 

  • Low L, Mander A, McCann K, Dearnaley D, Tjelle T, Mathiesen I, et al. DNA vaccination with electroporation induces increased antibody responses in patients with prostate cancer. Hum Gene Ther. 2009;20:1269–78.

    Article  CAS  PubMed  Google Scholar 

  • MacGregor RR, Boyer JD. First human trial of a DNA-based vaccine for treatment of human immunodeficiency virus type 1 infection: safety and host response. J Infect Dis. 1998;178:92–100.

    Article  CAS  PubMed  Google Scholar 

  • Martin T, Parker SE, Hedstrom R, Le T, Hoffman SL, Norman J, et al. Plasmid DNA malaria vaccine: the potential for genomic integration after intramuscular injection. Hum Gene Ther. 1999;10:759–68.

    Article  CAS  PubMed  Google Scholar 

  • McCluskie MJ, Brazolot Millan CL, Gramzinski RA, Robinson HL, Santoro JC, Fuller JT, et al. Route and method of delivery of DNA vaccine influence immune responses in mice and non-human primates. Mol Med Camb Mass. 1999;5:287–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  • McConkey SJ, Reece WHH, Moorthy VS, Webster D, Dunachie S, Butcher G, et al. Enhanced T-cell immunogenicity of plasmid DNA vaccines boosted by recombinant modified vaccinia virus Ankara in humans. Nat Med. 2003;9:729–35.

    Article  CAS  PubMed  Google Scholar 

  • McNeel DG, Dunphy EJ, Davies JG, Frye TP, Johnson LE, Staab MJ, et al. Safety and immunological efficacy of a DNA vaccine encoding prostatic acid phosphatase in patients with stage D0 prostate cancer. J Clin Oncol. 2009;27:4047–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McShane H, Brookes R, Gilbert SC, Hill AV. Enhanced immunogenicity of CD4(+) t-cell responses and protective efficacy of a DNA-modified vaccinia virus Ankara prime-boost vaccination regimen for murine tuberculosis. Infect Immun. 2001;69:681–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mincheff M, Tchakarov S, Zoubak S, Loukinov D, Botev C, Altankova I, et al. Naked DNA and adenoviral immunizations for immunotherapy of prostate cancer: a phase I/II clinical trial. Eur Urol. 2000;38:208–17.

    Article  CAS  PubMed  Google Scholar 

  • Nabel GJ, Gordon D, Bishop DK, Nickoloff BJ, Yang ZY, Aruga A, et al. Immune response in human melanoma after transfer of an allogeneic class I major histocompatibility complex gene with DNA-liposome complexes. Proc Natl Acad Sci U S A. 1996;93:15388–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nemunaitis J, Meyers T, Senzer N, Cunningham C, West H, Vallieres E, et al. Phase I Trial of sequential administration of recombinant DNA and adenovirus expressing L523S protein in early stage non-small-cell lung cancer. Mol Ther. 2006;13:1185–91.

    Article  CAS  PubMed  Google Scholar 

  • Nichols WW, Ledwith BJ, Manam SV, Troilo PJ. Potential DNA vaccine integration into host cell genome. Ann N Y Acad Sci. 1995;772:30–9.

    Article  CAS  PubMed  Google Scholar 

  • Norell H, Poschke I, Charo J, Wei WZ, Erskine C, Piechocki MP, et al. Vaccination with a plasmid DNA encoding HER-2/neu together with low doses of GM-CSF and IL-2 in patients with metastatic breast carcinoma: a pilot clinical trial. J Transl Med. 2010;8:53.

    Article  PubMed  PubMed Central  Google Scholar 

  • Petrovsky N, Aguilar JC. Vaccine adjuvants: current state and future trends. Immunol Cell Biol. 2004;82:488–96.

    Article  CAS  PubMed  Google Scholar 

  • Reyes-Sandoval A, Ertl HCJ. CpG methylation of a plasmid vector results in extended transgene product expression by circumventing induction of immune responses. Mol Ther. 2004;9:249–61.

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg SA, Yang JC, Sherry RM, Hwu P, Topalian SL, Schwartzentruber DJ, et al. Inability to immunize patients with metastatic melanoma using plasmid DNA encoding the gp100 melanoma-melanocyte antigen. Hum Gene Ther. 2003;14:709–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salman H, Zbaida D, Rabin Y, Chatenay D, Elbaum M. Kinetics and mechanism of DNA uptake into the cell nucleus. Proc Natl Acad Sci. 2001;98:7247–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sardesai NY, Weiner DB. Electroporation delivery of DNA vaccines: prospects for success. Curr Opin Immunol. 2011;23:421–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki S, Amara RR, Yeow W-S, Pitha PM, Robinson HL. Regulation of DNA-raised immune responses by cotransfected interferon regulatory factors. J Virol. 2002;76:6652–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shedlock DJ, Weiner DB. DNA vaccination: antigen presentation and the induction of immunity. J Leukoc Biol. 2000;68:793–806.

    CAS  PubMed  Google Scholar 

  • Spies B, Hochrein H, Vabulas M, Huster K, Busch DH, Schmitz F, et al. Vaccination with plasmid DNA activates dendritic cells via Toll-like receptor 9 (TLR9) but functions in TLR9-deficient mice. J Immunol Baltim Md 1950. 2003;171:5908–12.

    CAS  Google Scholar 

  • Tagawa ST, Lee P, Snively J, Boswell W, Ounpraseuth S, Lee S, et al. Phase I study of intranodal delivery of a plasmid DNA vaccine for patients with Stage IV melanoma. Cancer. 2003;98:144–54.

    Article  CAS  PubMed  Google Scholar 

  • Colluru VT, Johnson LE, Olson BM, McNeel DG. Preclinical and clinical development of DNA vaccines for prostate cancer. Urol Oncol. 2013;in press.

    Google Scholar 

  • Timmerman JM, Singh G, Hermanson G, Hobart P, Czerwinski DK, Taidi B, et al. Immunogenicity of a plasmid DNA vaccine encoding chimeric idiotype in patients with B-cell lymphoma. Cancer Res. 2002;62:5845–52.

    CAS  PubMed  Google Scholar 

  • Tojima Y, Fujimoto A, Delhase M, Chen Y, Hatakeyama S, Nakayama K, et al. NAK is an IkappaB kinase-activating kinase. Nature. 2000;404:778–82.

    Article  CAS  PubMed  Google Scholar 

  • Triozzi PL, Aldrich W, Allen KO, Carlisle RR, LoBuglio AF, Conry RM. Phase I study of a plasmid DNA vaccine encoding MART-1 in patients with resected melanoma at risk for relapse. J Immunother Hagerstown Md 1997. 2005;28:382–8.

    CAS  Google Scholar 

  • Weber JS, Vogelzang NJ, Ernstoff MS, Goodman OB, Cranmer LD, Marshall JL, et al. A phase 1 study of a vaccine targeting preferentially expressed antigen in melanoma and prostate-specific membrane antigen in patients with advanced solid tumors. J Immunother Hagerstown Md 1997. 2011;34:556–67.

    CAS  Google Scholar 

  • Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, et al. Direct gene transfer into mouse muscle in vivo. Science. 1990;247:1465–8.

    Article  CAS  PubMed  Google Scholar 

  • Wolff JA, Williams P, Acsadi G, Jiao S, Jani A, Chong W. Conditions affecting direct gene transfer into rodent muscle in vivo. Biotechniques. 1991;11:474–85.

    CAS  PubMed  Google Scholar 

  • Xiang Z, Ertl HC. Manipulation of the immune response to a plasmid-encoded viral antigen by coinoculation with plasmids expressing cytokines. Immunity. 1995;2:129–35.

    Article  CAS  PubMed  Google Scholar 

  • Yang D, Holt GE, Velders MP, Kwon ED, Kast WM. Murine six-transmembrane epithelial antigen of the prostate, prostate stem cell antigen, and prostate-specific membrane antigen: prostate-specific cell-surface antigens highly expressed in prostate cancer of transgenic adenocarcinoma mouse prostate mice. Cancer Res. 2001;61:5857–60.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas G. McNeel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this entry

Cite this entry

Bradley, E.S., McNeel, D.G. (2017). DNA Vaccines. In: Marshall, J. (eds) Cancer Therapeutic Targets. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0717-2_130

Download citation

Publish with us

Policies and ethics