Encyclopedia of Signaling Molecules

2012 Edition
| Editors: Sangdun Choi

RANK and RANKL

Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-0461-4_633

RANK and RANKL Family Members

RANK; receptor activator of nuclear factor-κB, TNFRSF11A; tumor necrosis factor receptor superfamily, member 11a, CD265. RANKL; receptor activator of nuclear factor-κB ligand, TNFSF11; tumor necrosis factor (ligand) superfamily, member 11, OPGL; osteoprotegerin ligand, ODF; osteoclast differentiation factor, TRANCE; TNF-related activation-induced cytokine, CD254.

Historical Background

In the late 1980s, an in vitro coculture system for osteoclast formation was established. This system was shown to require cell-to-cell contact between calvarial cells and bone marrow cells for osteoclast differentiation (Suda et al. 1999). Based on this finding, it was proposed that osteoclastogenesis-supporting mesenchymal lineage cells express an osteoclast differentiation factor (ODF) in the form of a membrane-associated protein (Suda et al. 1999). In the late 1990s, the potential inhibitor of osteoclastogenesis osteoprotegerin (OPG) was cloned. OPG is a decoy receptor...

This is a preview of subscription content, log in to check access

References

  1. Asselin-Labat ML, Vaillant F, Sheridan JM, Pal B, Wu D, Simpson ER, et al. Control of mammary stem cell function by steroid hormone signalling. Nature. 2010;465:798–802.PubMedCrossRefGoogle Scholar
  2. Beral V, Bull D, Reeves G. Endometrial cancer and hormone-replacement therapy in the million women study. Lancet. 2005;365:1543–51.PubMedCrossRefGoogle Scholar
  3. Cao Y, Bonizzi G, Seagroves TN, Greten FR, Johnson R, Schmidt EV, et al. IKKα provides an essential link between RANK signaling and cyclin D1 expression during mammary gland development. Cell. 2001;107:763–75.PubMedCrossRefGoogle Scholar
  4. Crabtree GR, Olson EN. NFAT signaling: choreographing the social lives of cells. Cell. 2002;109(Suppl):S67–79.PubMedCrossRefGoogle Scholar
  5. Fata JE, Kong YY, Li J, Sasaki T, Irie-Sasaki J, Moorehead RA, et al. The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Cell. 2000;103:41–50.PubMedCrossRefGoogle Scholar
  6. Fornier MN. Denosumab: second chapter in controlling bone metastases or a new book? J Clin Oncol. 2010;28:5127–31.PubMedCrossRefGoogle Scholar
  7. Gonzalez-Suarez E, Jacob AP, Jones J, Miller R, Roudier-Meyer MP, Erwert R, et al. RANK ligand mediates progestin-induced mammary epithelial proliferation and carcinogenesis. Nature. 2010;468:103–7.PubMedCrossRefGoogle Scholar
  8. Hanada R, Leibbrandt A, Hanada T, Kitaoka S, Furuyashiki T, Fujihara H, et al. Central control of fever and female body temperature by RANKL/RANK. Nature. 2009;462:505–9.PubMedCrossRefGoogle Scholar
  9. Hennighausen L, Robinson GW. Information networks in the mammary gland. Nat Rev Mol Cell Biol. 2005;6:715–25.PubMedCrossRefGoogle Scholar
  10. Jones DH, Nakashima T, Sanchez OH, Kozieradzki I, Komarova SV, Sarosi I, et al. Regulation of cancer cell migration and bone metastasis by RANKL. Nature. 2006;440:692–6.PubMedCrossRefGoogle Scholar
  11. Joshi PA, Jackson HW, Beristain AG, Di Grappa MA, Mote PA, Clarke CL, et al. Progesterone induces adult mammary stem cell expansion. Nature. 2010;465:803–7.PubMedCrossRefGoogle Scholar
  12. Kadono Y, Tanaka S, Nishino J, Nishimura K, Nakamura I, Miyazaki T, et al. Rheumatoid arthritis associated with osteopetrosis. Mod Rheumatol. 2009;19:687–90.PubMedCrossRefGoogle Scholar
  13. Kearns AE, Khosla S, Kostenuik PJ. Receptor activator of nuclear factor κB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev. 2008;29:155–92.PubMedCrossRefGoogle Scholar
  14. Kim NS, Kim HJ, Koo BK, Kwon MC, Kim YW, Cho Y, et al. Receptor activator of NF-κB ligand regulates the proliferation of mammary epithelial cells via Id2. Mol Cell Biol. 2006;26:1002–13.PubMedCrossRefGoogle Scholar
  15. Koga T, Inui M, Inoue K, Kim S, Suematsu A, Kobayashi E, et al. Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature. 2004;428:758–63.PubMedCrossRefGoogle Scholar
  16. Kong YY, Feige U, Sarosi I, Bolon B, Tafuri A, Morony S, et al. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature. 1999;402:304–9.PubMedCrossRefGoogle Scholar
  17. Lorenzo J, Horowitz M, Choi Y. Osteoimmunology: interactions of the bone and immune system. Endocr Rev. 2008;29:403–40.PubMedCrossRefGoogle Scholar
  18. Luo JL, Tan W, Ricono JM, Korchynskyi O, Zhang M, Gonias SL, et al. Nuclear cytokine-activated IKKα controls prostate cancer metastasis by repressing Maspin. Nature. 2007;446:690–4.PubMedCrossRefGoogle Scholar
  19. McClung MR, Lewiecki EM, Cohen SB, Bolognese MA, Woodson GC, Moffett AH, et al. Denosumab in postmenopausal women with low bone mineral density. N Engl J Med. 2006;354:821–31.PubMedCrossRefGoogle Scholar
  20. Miyauchi Y, Ninomiya K, Miyamoto H, Sakamoto A, Iwasaki R, Hoshi H, et al. The Blimp1-Bcl6 axis is critical to regulate osteoclast differentiation and bone homeostasis. J Exp Med. 2010;207:751–62.PubMedCrossRefGoogle Scholar
  21. Mundy GR. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer. 2002;2:584–93.PubMedCrossRefGoogle Scholar
  22. Nakashima T, Takayanagi H. Osteoimmunology: crosstalk between the immune and bone systems. J Clin Immunol. 2009;29:555–67.PubMedCrossRefGoogle Scholar
  23. Nakashima T, Kobayashi Y, Yamasaki S, Kawakami A, Eguchi K, Sasaki H, et al. Protein expression and functional difference of membrane-bound and soluble receptor activator of NF-κB ligand: modulation of the expression by osteotropic factors and cytokines. Biochem Biophys Res Commun. 2000;275:768–75.PubMedCrossRefGoogle Scholar
  24. Nakashima T, Hayashi M, Fukunaga T, Kurata K, Oh-Hora M, Feng JQ, et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med. 2011;17:1231–4.PubMedCrossRefGoogle Scholar
  25. Nishikawa K, Nakashima T, Hayashi M, Fukunaga T, Kato S, Kodama T, et al. Blimp1-mediated repression of negative regulators is required for osteoclast differentiation. Proc Natl Acad Sci U S A. 2010;107:3117–22.PubMedCrossRefGoogle Scholar
  26. Santini D, Schiavon G, Vincenzi B, Gaeta L, Pantano F, Russo A, et al. Receptor activator of NF-κB (RANK) expression in primary tumors associates with bone metastasis occurrence in breast cancer patients. PLoS One. 2011;6:e19234.PubMedCrossRefGoogle Scholar
  27. Sato K, Suematsu A, Nakashima T, Takemoto-Kimura S, Aoki K, Morishita Y, et al. Regulation of osteoclast differentiation and function by the CaMK-CREB pathway. Nat Med. 2006;12:1410–6.PubMedCrossRefGoogle Scholar
  28. Schramek D, Leibbrandt A, Sigl V, Kenner L, Pospisilik JA, Lee HJ, et al. Osteoclast differentiation factor RANKL controls development of progestin-driven mammary cancer. Nature. 2010;468:98–102.PubMedCrossRefGoogle Scholar
  29. Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML, et al. Generation of a functional mammary gland from a single stem cell. Nature. 2006;439:84–8.PubMedCrossRefGoogle Scholar
  30. Shinohara M, Koga T, Okamoto K, Sakaguchi S, Arai K, Yasuda H, et al. Tyrosine kinases Btk and Tec regulate osteoclast differentiation by linking RANK and ITAM signals. Cell. 2008;132:794–806.PubMedCrossRefGoogle Scholar
  31. Stopeck AT, Lipton A, Body JJ, Steger GG, Tonkin K, de Boer RH, et al. Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study. J Clin Oncol. 2010;28:5132–9.PubMedCrossRefGoogle Scholar
  32. Suda T, Takahashi N, Udagawa N, Jimi E, Gillespie MT, Martin TJ. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev. 1999;20:345–57.PubMedCrossRefGoogle Scholar
  33. Takayanagi H. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol. 2007;7:292–304.PubMedCrossRefGoogle Scholar
  34. Takayanagi H. Osteoimmunology and the effects of the immune system on bone. Nat Rev Rheumatol. 2009;5:667–76.PubMedCrossRefGoogle Scholar
  35. Takayanagi H, Iizuka H, Juji T, Nakagawa T, Yamamoto A, Miyazaki T, et al. Involvement of receptor activator of nuclear factor κB ligand/osteoclast differentiation factor in osteoclastogenesis from synoviocytes in rheumatoid arthritis. Arthritis Rheum. 2000a;43:259–69.PubMedCrossRefGoogle Scholar
  36. Takayanagi H, Ogasawara K, Hida S, Chiba T, Murata S, Sato K, et al. T cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-γ. Nature. 2000b;408:600–5.PubMedCrossRefGoogle Scholar
  37. Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling for terminal differentiation of osteoclasts. Dev Cell. 2002;3:889–901.PubMedCrossRefGoogle Scholar
  38. Theill LE, Boyle WJ, Penninger JM. RANK-L and RANK: T cells, bone loss, and mammalian evolution. Annu Rev Immunol. 2002;20:795–823.PubMedCrossRefGoogle Scholar
  39. Wagner EF, Eferl R. Fos/AP-1 proteins in bone and the immune system. Immunol Rev. 2005;208:126–40.PubMedCrossRefGoogle Scholar
  40. Zhao B, Takami M, Yamada A, Wang X, Koga T, Hu X, et al. Interferon regulatory factor-8 regulates bone metabolism by suppressing osteoclastogenesis. Nat Med. 2009;15:1066–71.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Cell Signaling, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityBunkyo-kuJapan
  2. 2.Japan Science and Technology Agency (JST), Explorative Research for Advanced Technology (ERATO) Program, Takayanagi Osteonetwork ProjectBunkyo-kuJapan
  3. 3.Global Center of Excellence (GCOE) Program, International Research Center for Molecular Science in Tooth and Bone DiseasesBunkyo-kuJapan