Encyclopedia of Signaling Molecules

2012 Edition
| Editors: Sangdun Choi

EphA3, Erythropoietin-Producing Hepatocellular Carcinoma Cell Receptor A3

Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-0461-4_628

Synonyms

Historical Background

A fragment of EphA3 was first cloned in 1991 by Sajjadi et al., in an expression-cloning screen of a chicken embryonic cDNA library using antibodies against phosphotyrosine (Sajjadi et al. 1991). Using this cDNA fragment as a probe, full-length cDNA from both chicken and mouse embryos were identified (Sajjadi et al. 1991). Human EphA3 was independently isolated as a cell surface antigen of a pre-B-cell leukemia cell line (Boyd et al. 1992; Wicks et al. 1992). EphA3 is a member of a large family of tyrosine kinase receptors, which plays many critical roles in both physiological and pathological conditions (Pasquale 2008).

EphA3 Protein

The full-length human EphA3 protein consists of 983 amino acids, organized into the typical extracellular, transmembrane, and intracellular domains as that of other Eph family tyrosine kinase receptors (Wicks et al. 1992). A splice variant, which contains...

This is a preview of subscription content, log in to check access

References

  1. Bae HJ, Song JH, Noh JH, Kim JK, Jung KH, Eun JW, et al. Low frequency mutation of the Ephrin receptor A3 gene in hepatocellular carcinoma. Neoplasma. 2009;56:331–4.PubMedCrossRefGoogle Scholar
  2. Balakrishnan A, Bleeker FE, Lamba S, Rodolfo M, Daniotti M, Scarpa A, et al. Novel somatic and germline mutations in cancer candidate genes in glioblastoma, melanoma, and pancreatic carcinoma. Cancer Res. 2007;67:3545–50.PubMedCrossRefGoogle Scholar
  3. Beckmann MP, Cerretti DP, Baum P, Vanden Bos T, James L, Farrah T, et al. Molecular characterization of a family of ligands for eph-related tyrosine kinase receptors. EMBO J. 1994;13:3757–62.PubMedGoogle Scholar
  4. Boyd AW, Ward LD, Wicks IP, Simpson RJ, Salvaris E, Wilks A, et al. Isolation and characterization of a novel receptor-type protein tyrosine kinase (hek) from a human pre-B cell line. J Biol Chem. 1992;267:3262–7.PubMedGoogle Scholar
  5. Brantley-Sieders DM, Caughron J, Hicks D, Pozzi A, Ruiz JC, Chen J. EphA2 receptor tyrosine kinase regulates endothelial cell migration and vascular assembly through phosphoinositide 3-kinase-mediated Rac1 GTPase activation. J Cell Sci. 2004;117:2037–49.PubMedCrossRefGoogle Scholar
  6. Brown A, Yates PA, Burrola P, Ortuno D, Vaidya A, Jessell TM, et al. Topographic mapping from the retina to the midbrain is controlled by relative but not absolute levels of EphA receptor signaling. Cell. 2000;102:77–88.PubMedCrossRefGoogle Scholar
  7. Carim-Todd L, Bath KG, Fulgenzi G, Yanpallewar S, Jing D, Barrick CA, et al. Endogenous truncated TrkB.T1 receptor regulates neuronal complexity and TrkB kinase receptor function in vivo. J Neurosci. 2009;29:678–85.PubMedCrossRefGoogle Scholar
  8. Carvalho RF, Beutler M, Marler KJ, Knoll B, Becker-Barroso E, Heintzmann R, et al. Silencing of EphA3 through a cis interaction with ephrinA5. Nat Neurosci. 2006;9:322–30.PubMedCrossRefGoogle Scholar
  9. Cerretti DP, Vanden Bos T, Nelson N, Kozlosky CJ, Reddy P, Maraskovsky E, et al. Isolation of LERK-5: a ligand of the eph-related receptor tyrosine kinases. Mol Immunol. 1995;32:1197–205.PubMedCrossRefGoogle Scholar
  10. Cheng HJ, Flanagan JG. Identification and cloning of ELF-1, a developmentally expressed ligand for the Mek4 and Sek receptor tyrosine kinases. Cell. 1994;79:157–68.PubMedCrossRefGoogle Scholar
  11. Cheng HJ, Nakamoto M, Bergemann AD, Flanagan JG. Complementary gradients in expression and binding of ELF-1 and Mek4 in development of the topographic retinotectal projection map. Cell. 1995;82:371–81.PubMedCrossRefGoogle Scholar
  12. Chiari R, Hames G, Stroobant V, Texier C, Maillere B, Boon T, et al. Identification of a tumor-specific shared antigen derived from an Eph receptor and presented to CD4 T cells on HLA class II molecules. Cancer Res. 2000;60:4855–63.PubMedGoogle Scholar
  13. Ciossek T, Monschau B, Kremoser C, Loschinger J, Lang S, Muller BK, et al. Eph receptor-ligand interactions are necessary for guidance of retinal ganglion cell axons in vitro. Eur J Neurosci. 1998;10:1574–80.PubMedCrossRefGoogle Scholar
  14. Cooper MA, Son AI, Komlos D, Sun Y, Kleiman NJ, Zhou R. Loss of ephrin-A5 function disrupts lens fiber cell packing and leads to cataract. Proc Natl Acad Sci USA. 2008;105:16620–5.PubMedCrossRefGoogle Scholar
  15. Corbo V, Ritelli R, Barbi S, Funel N, Campani D, Bardelli A, et al. Mutational profiling of kinases in human tumours of pancreatic origin identifies candidate cancer genes in ductal and ampulla of vater carcinomas. PLoS One. 2010;5:e12653.PubMedCrossRefGoogle Scholar
  16. Davis TL, Walker JR, Loppnau P, Butler-Cole C, Allali-Hassani A, Dhe-Paganon S. Autoregulation by the juxtamembrane region of the human ephrin receptor tyrosine kinase A3 (EphA3). Structure. 2008;16:873–84.PubMedCrossRefGoogle Scholar
  17. Day B, To C, Himanen JP, Smith FM, Nikolov DB, Boyd AW, et al. Three distinct molecular surfaces in ephrin-A5 are essential for a functional interaction with EphA3. J Biol Chem. 2005;280:26526–32.PubMedCrossRefGoogle Scholar
  18. Demyanenko GP, Siesser PF, Wright AG, Brennaman LH, Bartsch U, Schachner M, et al. L1 and CHL1 cooperate in thalamocortical axon targeting. Cereb Cortex. 2011;21:401–12.PubMedCrossRefGoogle Scholar
  19. Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K, et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature. 2008;455:1069–75.PubMedCrossRefGoogle Scholar
  20. Drescher U, Kremoser C, Handwerker C, Loschinger J, Noda M, Bonhoeffer F. In vitro guidance of retinal ganglion cell axons by RAGS, a 25 kDa tectal protein related to ligands for Eph receptor tyrosine kinases. Cell. 1995;82:359–70.PubMedCrossRefGoogle Scholar
  21. Dufour A, Seibt J, Passante L, Depaepe V, Ciossek T, Frisen J, et al. Area specificity and topography of thalamocortical projections are controlled by ephrin/Eph genes. Neuron. 2003;39:453–65.PubMedCrossRefGoogle Scholar
  22. Feldheim DA, Kim YI, Bergemann AD, Frisen J, Barbacid M, Flanagan JG. Genetic analysis of ephrin-A2 and ephrin-A5 shows their requirement in multiple aspects of retinocollicular mapping. Neuron. 2000;25:563–74.PubMedCrossRefGoogle Scholar
  23. Feldheim DA, Nakamoto M, Osterfield M, Gale NW, DeChiara TM, Rohatgi R, et al. Loss-of-function analysis of EphA receptors in retinotectal mapping. J Neurosci. 2004;24:2542–50.PubMedCrossRefGoogle Scholar
  24. Frieden LA, Townsend TA, Vaught DB, Delaughter DM, Hwang Y, Barnett JV, et al. Regulation of heart valve morphogenesis by Eph receptor ligand, ephrin-A1. Dev Dyn. 2010;239:3226–34.PubMedCrossRefGoogle Scholar
  25. Gallarda BW, Bonanomi D, Muller D, Brown A, Alaynick WA, Andrews SE, et al. Segregation of axial motor and sensory pathways via heterotypic trans-axonal signaling. Science (New York NY). 2008;320:233–6.CrossRefGoogle Scholar
  26. Himanen JP, Nikolov DB. Eph signaling: a structural view. Trends Neurosci. 2003;26:46–51.PubMedCrossRefGoogle Scholar
  27. Himanen JP, Rajashankar KR, Lackmann M, Cowan CA, Henkemeyer M, Nikolov DB. Crystal structure of an Eph receptor-ephrin complex. Nature. 2001;414:933–8.PubMedCrossRefGoogle Scholar
  28. Holzman LB, Marks RM, Dixit VM. A novel immediate-early response gene of endothelium is induced by cytokines and encodes a secreted protein. Mol Cell Biol. 1990;10:5830–8.PubMedGoogle Scholar
  29. Hu T, Shi G, Larose L, Rivera GM, Mayer BJ, Zhou R. Regulation of process retraction and cell migration by EphA3 is mediated by the adaptor protein Nck1. Biochemistry. 2009;48:6369–78.PubMedCrossRefGoogle Scholar
  30. Iwamasa H, Ohta K, Yamada T, Ushijima K, Terasaki H, Tanaka H. Expression of Eph receptor tyrosine kinases and their ligands in chick embryonic motor neurons and hindlimb muscles. Dev Growth Differ. 1999;41:685–98.PubMedCrossRefGoogle Scholar
  31. Janes PW, Saha N, Barton WA, Kolev MV, Wimmer-Kleikamp SH, Nievergall E, et al. Adam meets Eph: an ADAM substrate recognition module acts as a molecular switch for ephrin cleavage in trans. Cell. 2005;123:291–304.PubMedCrossRefGoogle Scholar
  32. Kilpatrick TJ, Brown A, Lai C, Gassmann M, Goulding M, Lemke G. Expression of the Tyro4/Mek4/Cek4 gene specifically marks a subset of embryonic motor neurons and their muscle targets. Mol Cell Neurosci. 1996;7:62–74.PubMedCrossRefGoogle Scholar
  33. Kozlosky CJ, Maraskovsky E, McGrew JT, VandenBos T, Teepe M, Lyman SD, et al. Ligands for the receptor tyrosine kinases hek and elk: isolation of cDNAs encoding a family of proteins. Oncogene. 1995;10:299–306.PubMedGoogle Scholar
  34. Kudo C, Ajioka I, Hirata Y, Nakajima K. Expression profiles of EphA3 at both the RNA and protein level in the developing mammalian forebrain. J Comp Neurol. 2005;487:255–69.PubMedCrossRefGoogle Scholar
  35. Labrador JP, Brambilla R, Klein R. The N-terminal globular domain of Eph receptors is sufficient for ligand binding and receptor signaling. EMBO J. 1997;16:3889–97.PubMedCrossRefGoogle Scholar
  36. Lackmann M, Bucci T, Mann RJ, Kravets LA, Viney E, Smith F, et al. Purification of a ligand for the EPH-like receptor HEK using a biosensor-based affinity detection approach. Proc Natl Acad Sci USA. 1996;93:2523–7.PubMedCrossRefGoogle Scholar
  37. Lackmann M, Mann RJ, Kravets L, Smith FM, Bucci TA, Maxwell KF, et al. Ligand for EPH-related kinase (LERK) 7 is the preferred high affinity ligand for the HEK receptor. J Biol Chem. 1997;272:16521–30.PubMedCrossRefGoogle Scholar
  38. Lackmann M, Oates AC, Dottori M, Smith FM, Do C, Power M, et al. Distinct subdomains of the EphA3 receptor mediate ligand binding and receptor dimerization. J Biol Chem. 1998;273:20228–37.PubMedCrossRefGoogle Scholar
  39. Lai C, Lemke G. An extended family of protein-tyrosine kinase genes differentially expressed in the vertebrate nervous system. Neuron. 1991;6:691–704.PubMedCrossRefGoogle Scholar
  40. Lawrenson ID, Wimmer-Kleikamp SH, Lock P, Schoenwaelder SM, Down M, Boyd AW, et al. Ephrin-A5 induces rounding, blebbing and de-adhesion of EphA3-expressing 293 T and melanoma cells by CrkII and Rho-mediated signalling. J Cell Sci. 2002;115:1059–72.PubMedGoogle Scholar
  41. Lee DJ, Schonleben F, Banuchi VE, Qiu W, Close LG, Assaad AM, et al. Multiple tumor-suppressor genes on chromosome 3p contribute to head and neck squamous cell carcinoma tumorigenesis. Cancer Biol Ther. 2010;10:689–93.PubMedCrossRefGoogle Scholar
  42. Li YY, McTiernan CF, Feldman AM. IL-1 beta alters the expression of the receptor tyrosine kinase gene r-EphA3 in neonatal rat cardiomyocytes. Am J Physiol. 1998;274:H331–41.PubMedGoogle Scholar
  43. Li W, Fan J, Woodley DT. Nck/Dock: an adapter between cell surface receptors and the actin cytoskeleton. Oncogene. 2001;20:6403–17.PubMedCrossRefGoogle Scholar
  44. Mackarehtschian K, Lau CK, Caras I, McConnell SK. Regional differences in the developing cerebral cortex revealed by ephrin-A5 expression. Cereb Cortex. 1999;9:601–10.PubMedCrossRefGoogle Scholar
  45. Nievergall E, Janes PW, Stegmayer C, Vail ME, Haj FG, Teng SW, et al. PTP1B regulates Eph receptor function and trafficking. J Cell Biol. 2010;191:1189–203.PubMedCrossRefGoogle Scholar
  46. Pabbisetty KB, Yue X, Li C, Himanen JP, Zhou R, Nikolov DB, et al. Kinetic analysis of the binding of monomeric and dimeric ephrins to Eph receptors: correlation to function in a growth cone collapse assay. Protein Sci. 2007;16:355–61.PubMedCrossRefGoogle Scholar
  47. Pasquale EB. Eph-ephrin bidirectional signaling in physiology and disease. Cell. 2008;133:38–52.PubMedCrossRefGoogle Scholar
  48. Passante L, Gaspard N, Degraeve M, Frisen J, Kullander K, De Maertelaer V, et al. Temporal regulation of ephrin/Eph signalling is required for the spatial patterning of the mammalian striatum. Development(Cambridge, England). 2008;135:3281–90.CrossRefGoogle Scholar
  49. Sajjadi FG, Pasquale EB, Subramani S. Identification of a new eph-related receptor tyrosine kinase gene from mouse and chicken that is developmentally regulated and encodes at least two forms of the receptor. New Biol. 1991;3:769–78.PubMedGoogle Scholar
  50. Schulte D, Cepko CL. Two homeobox genes define the domain of EphA3 expression in the developing chick retina. Development (Cambridge, England). 2000;127:5033–45.Google Scholar
  51. Sharfe N, Freywald A, Toro A, Roifman CM. Ephrin-A1 induces c-Cbl phosphorylation and EphA receptor down-regulation in T cells. J Immunol. 2003;170:6024–32.PubMedGoogle Scholar
  52. Shi G, Yue G, Zhou R. EphA3 functions are regulated by collaborating phosphotyrosine residues. Cell Res. 2010;20:1263–75.PubMedCrossRefGoogle Scholar
  53. Sieber BA, Kuzmin A, Canals JM, Danielsson A, Paratcha G, Arenas E, et al. Disruption of EphA/ephrin-a signaling in the nigrostriatal system reduces dopaminergic innervation and dissociates behavioral responses to amphetamine and cocaine. Mol Cell Neurosci. 2004;26:418–28.PubMedCrossRefGoogle Scholar
  54. Smith FM, Vearing C, Lackmann M, Treutlein H, Himanen J, Chen K, et al. Dissecting the EphA3/Ephrin-A5 interactions using a novel functional mutagenesis screen. J Biol Chem. 2004a;279:9522–31.PubMedCrossRefGoogle Scholar
  55. Smith LM, Walsh PT, Rudiger T, Cotter TG, Mc Carthy TV, Marx A, et al. EphA3 is induced by CD28 and IGF-1 and regulates cell adhesion. Exp Cell Res. 2004b;292:295–303.PubMedCrossRefGoogle Scholar
  56. Stein E, Lane AA, Cerretti DP, Schoecklmann HO, Schroff AD, Van Etten RL, et al. Eph receptors discriminate specific ligand oligomers to determine alternative signaling complexes, attachment, and assembly responses. Genes Dev. 1998;12:667–78.PubMedCrossRefGoogle Scholar
  57. Stephen LJ, Fawkes AL, Verhoeve A, Lemke G, Brown A. A critical role for the EphA3 receptor tyrosine kinase in heart development. Dev Biol. 2007;302:66–79.PubMedCrossRefGoogle Scholar
  58. Stubbs J, Palmer A, Vidovic M, Marotte LR. Graded expression of EphA3 in the retina and ephrin-A2 in the superior colliculus during initial development of coarse topography in the wallaby retinocollicular projection. Eur J Neurosci. 2000;12:3626–36.PubMedCrossRefGoogle Scholar
  59. Takahashi H, Shintani T, Sakuta H, Noda M. CBF1 controls the retinotectal topographical map along the anteroposterior axis through multiple mechanisms. Development (Cambridge, England). 2003;130:5203–15.CrossRefGoogle Scholar
  60. Takahashi H, Sakuta H, Shintani T, Noda M. Functional mode of FoxD1/CBF2 for the establishment of temporal retinal specificity in the developing chick retina. Dev Biol. 2009;331:300–10.PubMedCrossRefGoogle Scholar
  61. Uziel D, Muhlfriedel S, Zarbalis K, Wurst W, Levitt P, Bolz J. Miswiring of limbic thalamocortical projections in the absence of ephrin-A5. J Neurosci. 2002;22:9352–7.PubMedGoogle Scholar
  62. Uziel D, Garcez P, Lent R, Peuckert C, Niehage R, Weth F, et al. Connecting thalamus and cortex: the role of ephrins. Anat Rec. 2006;288:135–42.CrossRefGoogle Scholar
  63. Vearing CJ, Lackmann M. Eph receptor signalling; dimerisation just isn’t enough. Growth factors (Chur, Switzerland). 2005;23:67–76.CrossRefGoogle Scholar
  64. Vearing C, Lee FT, Wimmer-Kleikamp S, Spirkoska V, To C, Stylianou C, et al. Concurrent binding of anti-EphA3 antibody and ephrin-A5 amplifies EphA3 signaling and downstream responses: potential as EphA3-specific tumor-targeting reagents. Cancer Res. 2005;65:6745–54.PubMedCrossRefGoogle Scholar
  65. Wicks IP, Wilkinson D, Salvaris E, Boyd AW. Molecular cloning of HEK, the gene encoding a receptor tyrosine kinase expressed by human lymphoid tumor cell lines. Proc Natl Acad Sci USA. 1992;89:1611–5.PubMedCrossRefGoogle Scholar
  66. Wimmer-Kleikamp SH, Nievergall E, Gegenbauer K, Adikari S, Mansour M, Yeadon T, et al. Elevated protein tyrosine phosphatase activity provokes Eph/ephrin-facilitated adhesion of pre-B leukemia cells. Blood. 2008;112:721–32.PubMedCrossRefGoogle Scholar
  67. Winslow JW, Moran P, Valverde J, Shih A, Yuan JQ, Wong SC, et al. Cloning of AL-1, a ligand for an Eph-related tyrosine kinase receptor involved in axon bundle formation. Neuron. 1995;14:973–81.PubMedCrossRefGoogle Scholar
  68. Wood LD, Calhoun ES, Silliman N, Ptak J, Szabo S, Powell SM, et al. Somatic mutations of GUCY2F, EPHA3, and NTRK3 in human cancers. Hum Mutat. 2006;27:1060–1.PubMedCrossRefGoogle Scholar
  69. Yue Y, Widmer DA, Halladay AK, Cerretti DP, Wagner GC, Dreyer JL, et al. Specification of distinct dopaminergic neural pathways: roles of the Eph family receptor EphB1 and ligand ephrin-B2. J Neurosci. 1999;19:2090–101.PubMedGoogle Scholar
  70. Yue Y, Chen ZY, Gale NW, Blair-Flynn J, Hu TJ, Yue X, et al. Mistargeting hippocampal axons by expression of a truncated Eph receptor. Proc Natl Acad Sci USA. 2002;99:10777–82.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Chemical Biology, Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of PharmacyRutgers UniversityPiscatawayUSA