Skip to main content

VAMP1/2/3/7

  • Reference work entry
Encyclopedia of Signaling Molecules

Overview

Intracellular membrane trafficking in eukaryotes is a multiple-step process that can be artificially divided in the budding of vesicles from a donor compartment, their translocation into the cytoplasm along cytoskeletal elements, their tethering and subsequent fusion with the membrane of the target compartment. Membrane fusion involves SNARE proteins, classified into two categories, vesicular (v)-SNAREs and target (t)-SNAREs present on the acceptor membrane. It is the specific pairing of v-SNAREs with their cognate t-SNAREs in trans that is responsible for bringing the lipid bilayers together for membrane fusion and the zippering of SNAREs provides the required energy (Fig. 1). This review focus on the discovery of SNAREs and then on four of the nine v-SNAREs: the clostridial neurotoxin sensitive VAMPs 1, 2, and 3 and on Tetanus neurotoxin-Insensitive Vesicle-Associated Membrane Protein, TI-VAMP/VAMP7. VAMP7, unlike the first ones, possess a long amino-terminal domain called...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Balch WE, Dunphy WG, et al. Reconstitution of the transport of protein between successive compartments of the Golgi measured by the coupled incorporation of N-acetylglucosamine. Cell. 1984;39(2 Pt 1):405–16.

    PubMed  CAS  Google Scholar 

  • Bhattacharya S, Stewart BA, et al. Members of the synaptobrevin/vesicle-associated membrane protein (VAMP) family in Drosophila are functionally interchangeable in vivo for neurotransmitter release and cell viability. Proc Natl Acad Sci USA. 2002;99(21):13867–72.

    PubMed  CAS  Google Scholar 

  • Block MR, Rothman JE. Purification of N-ethylmaleimide-sensitive fusion protein. Methods Enzymol. 1992;219:300–9.

    PubMed  CAS  Google Scholar 

  • Borisovska M, Zhao Y, et al. v-SNAREs control exocytosis of vesicles from priming to fusion. EMBO J. 2005;24(12):2114–26.

    PubMed  CAS  Google Scholar 

  • Bunnell SC, Hong DI, et al. T cell receptor ligation induces the formation of dynamically regulated signaling assemblies. J Cell Biol. 2002;158(7):1263–75.

    PubMed  CAS  Google Scholar 

  • Burgo A, Sotirakis E, et al. Role of Varp, a Rab21 exchange factor and TI-VAMP/VAMP7 partner, in neurite growth. EMBO Rep. 2009;10(10):1117–24.

    PubMed  CAS  Google Scholar 

  • Chaineau M, Danglot L, et al. Multiple roles of the vesicular-SNARE TI-VAMP in post-Golgi and endosomal trafficking. FEBS Lett. 2009;583(23):3817–26.

    PubMed  CAS  Google Scholar 

  • Danglot L, Chaineau M, et al. Role of TI-VAMP and CD82 in EGFR cell-surface dynamics and signaling. J Cell Sci. 2010;123(5):723–35.

    PubMed  CAS  Google Scholar 

  • Deak F, Shin OH, et al. Structural determinants of synaptobrevin 2 function in synaptic vesicle fusion. J Neurosci. 2006;26(25):6668–76.

    PubMed  CAS  Google Scholar 

  • Fader CM, Sanchez DG, et al. TI-VAMP/VAMP7 and VAMP3/cellubrevin: two v-SNARE proteins involved in specific steps of the autophagy/multivesicular body pathways. Biochim Biophys Acta. 2009;1793(12):1901–16.

    PubMed  CAS  Google Scholar 

  • Feldmann A, Amphornrat J, et al. Transport of the major myelin proteolipid protein is directed by VAMP3 and VAMP7. J Neurosci. 2011;31(15):5659–72.

    PubMed  CAS  Google Scholar 

  • Fields IC, Shteyn E, et al. v-SNARE cellubrevin is required for basolateral sorting of AP-1B-dependent cargo in polarized epithelial cells. J Cell Biol. 2007;177(3):477–88.

    PubMed  CAS  Google Scholar 

  • Flaumenhaft R. Molecular basis of platelet granule secretion. Arterioscler Thromb Vasc Biol. 2003;23(7):1152–60.

    PubMed  CAS  Google Scholar 

  • Francesconi A, Kumari R, et al. Regulation of group I metabotropic glutamate receptor trafficking and signaling by the caveolar/lipid raft pathway. J Neurosci. 2009;29(11):3590–602.

    PubMed  CAS  Google Scholar 

  • Hager HA, Roberts RJ, et al. Identification of a novel Bves function: regulation of vesicular transport. EMBO J. 2010;29(3):532–45.

    PubMed  CAS  Google Scholar 

  • Hasan N, Corbin D, et al. Fusogenic pairings of vesicle-associated membrane proteins (VAMPs) and plasma membrane t-SNAREs–VAMP5 as the exception. PLoS One. 2010;5(12):e14238.

    PubMed  CAS  Google Scholar 

  • Hou JC, Min L, et al. Insulin granule biogenesis, trafficking and exocytosis. Vitam Horm. 2009;80:473–506.

    PubMed  CAS  Google Scholar 

  • Jahn R, Scheller RH. SNAREs – engines for membrane fusion. Nat Rev Mol Cell Biol. 2006;7(9):631–43.

    PubMed  CAS  Google Scholar 

  • Ji H, Coleman J, et al. Protein determinants of SNARE-mediated lipid mixing. Biophys J. 2010;99(2):553–60.

    PubMed  CAS  Google Scholar 

  • Kay JG, Murray RZ, et al. Cytokine secretion via cholesterol-rich lipid raft-associated SNAREs at the phagocytic cup. J Biol Chem. 2006;281(17):11949–54.

    PubMed  CAS  Google Scholar 

  • Kerschensteiner D, Morgan JL, et al. Neurotransmission selectively regulates synapse formation in parallel circuits in vivo. Nature. 2009;460(7258):1016–20.

    PubMed  CAS  Google Scholar 

  • Kwon C, Neu C, et al. Co-option of a default secretory pathway for plant immune responses. Nature. 2008;451(7180):835–40.

    PubMed  CAS  Google Scholar 

  • Li F, Pincet F, et al. Energetics and dynamics of SNAREpin folding across lipid bilayers. Nat Struct Mol Biol. 2007;14(10):890–6.

    PubMed  CAS  Google Scholar 

  • Liu Y, Sugiura Y, et al. The role of Synaptobrevin1/VAMP1 in Ca2+ − triggered neurotransmitter release at the mouse neuromuscular junction. J Physiol. 2011;589(Pt 7):1603–18.

    PubMed  CAS  Google Scholar 

  • Luftman K, Hasan N, et al. Silencing of VAMP3 inhibits cell migration and integrin-mediated adhesion. Biochem Biophys Res Commun. 2009;380(1):65–70.

    PubMed  CAS  Google Scholar 

  • Mohrmann R, de Wit H, et al. Fast vesicle fusion in living cells requires at least three SNARE complexes. Science. 2010;330(6003):502–5.

    PubMed  CAS  Google Scholar 

  • Montecucco C, Schiavo G, et al. SNARE complexes and neuroexocytosis: how many, how close? Trends Biochem Sci. 2005;30(7):367–72.

    PubMed  CAS  Google Scholar 

  • Murray RZ, Kay JG, et al. A role for the phagosome in cytokine secretion. Science. 2005;310(5753):1492–5.

    PubMed  CAS  Google Scholar 

  • Orci L, Malhotra V, et al. Dissection of a single round of vesicular transport: sequential intermediates for intercisternal movement in the Golgi stack. Cell. 1989;56:357–68.

    PubMed  CAS  Google Scholar 

  • Polgar J, Chung SH, et al. Vesicle-associated membrane protein 3 (VAMP-3) and VAMP-8 are present in human platelets and are required for granule secretion. Blood. 2002;100(3):1081–3.

    PubMed  CAS  Google Scholar 

  • Proux-Gillardeaux V, Gavard J, et al. Tetanus neurotoxin-mediated cleavage of cellubrevin impairs epithelial cell migration and integrin-dependent cell adhesion. Proc Natl Acad Sci USA. 2005a;102(18):6362–7.

    PubMed  CAS  Google Scholar 

  • Proux-Gillardeaux V, Rudge R, et al. The tetanus neurotoxin-sensitive and insensitive routes to and from the plasma membrane: fast and slow pathways? Traffic. 2005b;6(5):366– 73.

    PubMed  CAS  Google Scholar 

  • Pryor PR, Luzio JP. Delivery of endocytosed membrane proteins to the lysosome. Biochim Biophys Acta. 2009;1793(4):615–24.

    PubMed  CAS  Google Scholar 

  • Raptis A, Torrejon-Escribano B, et al. Distribution of synaptobrevin/VAMP 1 and 2 in rat brain. J Chem Neuroanat. 2005;30(4):201–11.

    PubMed  CAS  Google Scholar 

  • Rothman JE, Warren G. Implication of the SNARE hypothesis for intracellular membrane topology and dynamics. Curr Biol. 1994;4:220–33.

    PubMed  CAS  Google Scholar 

  • Skalski M, Coppolino MG. SNARE-mediated trafficking of alpha5beta1 integrin is required for spreading in CHO cells. Biochem Biophys Res Commun. 2005;335(4):1199–210.

    PubMed  CAS  Google Scholar 

  • Skalski M, Yi Q, et al. Lamellipodium extension and membrane ruffling require different SNARE-mediated trafficking pathways. BMC Cell Biol. 2010;11:62.

    PubMed  Google Scholar 

  • Söllner T, Bennett MK, et al. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell. 1993a;75:409–18.

    PubMed  Google Scholar 

  • Söllner T, Whiteheart SW, et al. SNAP receptors implicated in vesicle targeting and fusion. Nature. 1993b;362:318–24.

    PubMed  Google Scholar 

  • Tayeb MA, Skalski M, et al. Inhibition of SNARE-mediated membrane traffic impairs cell migration. Exp Cell Res. 2005;305(1):63–73.

    PubMed  CAS  Google Scholar 

  • van den Bogaart G, Holt MG, et al. One SNARE complex is sufficient for membrane fusion. Nat Struct Mol Biol. 2010;17(3):358–64.

    PubMed  Google Scholar 

  • Veale KJ, Offenhauser C, et al. Recycling endosome membrane incorporation into the leading edge regulates l amellipodia formation and macrophage migration.Traffic. 2010;11(10):1370–9.

    PubMed  CAS  Google Scholar 

  • Vivona S, Liu CW, et al. The longin SNARE VAMP7/TI-VAMP adopts a closed conformation. J Biol Chem. 2010;285(23):17965–73.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We apologize to all the authors that are not cited in the text due to strict reference limitation, we have cited very few reviews on the topic and only the most recent papers that were not cited in these. Our work is supported in part by grants from the Institut National de la Santé et de la Recherche Médicale (INSERM) and the Centre National de la Recherche Scientifique (CNRS), the Association pour la Recherche sur le Cancer (ARC), the Association Française contre les Myopathies (AFM), the Fondation pour la Recherche Médicale (FRM), the Mairie de Paris Medical Research and Health Program, Fédération pour la Recherche sur le Cerveau (FRC), and the Ecole des Neurosciences de Paris-Ile de France (ENP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Véronique Proux-Gillardeaux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Cite this entry

Galli, T., Proux-Gillardeaux, V. (2012). VAMP1/2/3/7. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0461-4_627

Download citation

Publish with us

Policies and ethics