Skip to main content

Toll-like Receptor Adaptor Protein Family Members

  • Reference work entry
Encyclopedia of Signaling Molecules
  • 218 Accesses

Synonyms

Mal: Myd88-adapter-like; TLR4AP; TIRAP; Toll-interleukin 1 receptor (TIR) domain-containing adapter protein; Toll-like receptor 4 adapter protein; Wyatt

MyD88: Myeloid differentiation primary response gene 88

SARM: MyD88-5; Sterile alpha and TIR motif-containing protein

TRIF: TICAM-1; TIR-domain-containing adapter molecule 1; TIR-domain-containing adapter protein inducing IFN-beta; Toll-interleukin-1 receptor domain-containing adapter protein inducing interferon beta

TRAM: TICAM-2; TIRP; TIR-domain-containing adapter molecule 2; TRIF-related adapter molecule; Toll-like receptor adaptor protein 3; Toll/interleukin-1 receptor domain-containing protein

Historical Background

Toll-like receptors (TLRs) play a critical role in innate immunity by providing a frontline defense mechanism against invading pathogens such as bacteria, fungi and viruses. They accomplish this by recognising evolutionarily conserved pathogen-associated molecular patterns (PAMPs) which are unique to pathogens...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004;4:499–511.

    PubMed  CAS  Google Scholar 

  • Bin LH, Xu LG, Shu HB. TIRP, a novel Toll/interleukin-1 receptor (TIR) domain-containing adapter protein involved in TIR signaling. J Biol Chem. 2003;278:24526–32.

    PubMed  CAS  Google Scholar 

  • Carty M, Goodbody R, Schroder M, Stack J, Moynagh PN, Bowie AG. The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling. Nat Immunol. 2006;7:1074–81.

    PubMed  CAS  Google Scholar 

  • Chen GY, Nunez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol. 2010;10:826–37.

    PubMed  CAS  Google Scholar 

  • Dunne A, Carpenter S, Brikos C, Gray P, Strelow A, Wesche H, et al. IRAK1 and IRAK4 promote phosphorylation, ubiquitination, and degradation of MyD88 adaptor-like (Mal). J Biol Chem. 2010;285:18276–82.

    PubMed  CAS  Google Scholar 

  • Fitzgerald KA, Palsson-McDermott EM, Bowie AG, Jefferies CA, Mansell AS, Brady G, et al. Mal (MyD88-adapter-like) is required for toll-like receptor-4 signal transduction. Nature. 2001;413:78–83.

    PubMed  CAS  Google Scholar 

  • Fitzgerald KA, Rowe DC, Barnes BJ, Caffrey DR, Visintin A, Latz E, et al. LPS-TLR4 signaling to IRF-3/7 and NF-kappaB involves the toll adapters TRAM and TRIF. J Exp Med. 2003;198:1043–55.

    PubMed  CAS  Google Scholar 

  • Gauzzi C, Del Corno M, Gessani S. Dissecting TLR3 signalling in dendritic cells. Immunobiology. 2010;215:713–23.

    PubMed  Google Scholar 

  • Horng T, Barton GM, Medzhitov R. TIRAP: an adapter molecule in the toll signaling pathway. Nat Immunol. 2001;2:835–41.

    PubMed  CAS  Google Scholar 

  • Horng T, Barton GM, Flavell RA, Medzhitov R. The adaptor molecule TIRAP provides signalling specificity for toll-like receptors. Nature. 2002;420:329–33.

    PubMed  CAS  Google Scholar 

  • Jenkins KA, Mansell A. TIR-containing adaptors in toll-like receptor signalling. Cytokine. 2010;49:237–44.

    PubMed  CAS  Google Scholar 

  • Johnson AC, Li X, Pearlman E. MyD88 functions as a negative regulator of TLR3/TRIF-induced corneal inflammation by inhibiting activation of c-Jun N-terminal kinase. J Biol Chem. 2008;283:3988–96.

    PubMed  CAS  Google Scholar 

  • Kagan JC, Medzhitov R. Phosphoinositide-mediated adaptor recruitment controls toll-like receptor signaling. Cell. 2006;125:943–55.

    PubMed  CAS  Google Scholar 

  • Kawai T, Akira S. TLR signaling. Cell Death Differ. 2006;13:816–25.

    PubMed  CAS  Google Scholar 

  • Kenny EF, Talbot S, Gong M, Golenbock DT, Bryant CE, O’Neill LA. MyD88 adaptor-like is not essential for TLR2 signaling and inhibits signaling by TLR3. J Immunol. 2009;183:3642–51.

    PubMed  CAS  Google Scholar 

  • Kumar H, Kawai T, Akira S. Pathogen recognition in the innate immune response. Biochem J. 2009;420:1–16.

    PubMed  CAS  Google Scholar 

  • Lysakova-Devine T, Keogh B, Harrington B, Nagpal K, Halle A, Golenbock DT, et al. Viral inhibitory peptide of TLR4, a peptide derived from vaccinia protein A46, specifically inhibits TLR4 by directly targeting MyD88 adaptor-like and TRIF-related adaptor molecule. J Immunol. 2010;185:4261–71.

    PubMed  CAS  Google Scholar 

  • Medzhitov R, Preston-Hurlburt P, Kopp E, Stadlen A, Chen C, Ghosh S, et al. MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell. 1998;2:253–8.

    PubMed  CAS  Google Scholar 

  • Miggin SM, O’Neill LA. New insights into the regulation of TLR signaling. J Leukoc Biol. 2006;80:220–6.

    PubMed  CAS  Google Scholar 

  • Miggin SM, PĂ¥lsson-McDermott E, Dunne A, Jefferies C, Pinteaux E, Banahan K, et al. NF-kB activation by the Toll-IL-1 receptor domain protein MyD88 adapter-like is regulated by caspase-1. Proc Natl Acad Sci USA. 2007;104:3372–7.

    PubMed  CAS  Google Scholar 

  • Moynagh PN. The Pellino family: IRAK E3 ligases with emerging roles in innate immune signalling. Trends Immunol. 2008;30:33–42.

    PubMed  Google Scholar 

  • Nunez Miguel R, Wong J, Westoll JF, Brooks HJ, O’Neill LA, Gay NJ, et al. A dimer of the toll-like receptor 4 cytoplasmic domain provides a specific scaffold for the recruitment of signalling adaptor proteins. PLoS One. 2007;2:e788.

    PubMed  Google Scholar 

  • O’Neill LA, Bowie AG. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol. 2007;7:353–64.

    PubMed  Google Scholar 

  • O’Neill LA, Bryant CE, Doyle SL. Therapeutic targeting of toll-like receptors for infectious and inflammatory diseases and cancer. Pharmacol Rev. 2009;61(2):177–97.

    Google Scholar 

  • Palsson-McDermott EM, Doyle SL, McGettrick AF, Hardy M, Husebye H, Banahan K, et al. TAG, a splice variant of the adaptor TRAM, negatively regulates the adaptor MyD88-independent TLR4 pathway. Nat Immunol. 2009;10:579–86.

    PubMed  CAS  Google Scholar 

  • Rhee SH. Basic and translational understandings of microbial recognition by toll-like receptors in the intestine. Neurogastroenterol Motil. 2011;17:28–34.

    Google Scholar 

  • Sasai M, Tatematsu M, Oshiumi H, Funami K, Matsumoto M, Hatakeyama S, et al. Direct binding of TRAF2 and TRAF6 to TICAM-1/TRIF adaptor participates in activation of the toll-like receptor 3/4 pathway. Mol Immunol. 2010;47:1283–91.

    PubMed  CAS  Google Scholar 

  • Siednienko J, Halle A, Nagpal K, Golenbock DT, Miggin SM. TLR3-mediated IFN-beta gene induction is negatively regulated by the TLR adaptor MyD88 adaptor-like. Eur J Immunol. 2010;40:3150–60.

    PubMed  CAS  Google Scholar 

  • Siednienko J, Gajanayake T, Fitzgerald KA, Moynagh P, Miggin SM. Absence of MyD88 results in enhanced TLR3-dependent phosphorylation of IRF3 and increased IFN-(beta) and RANTES production. J Immunol. 2011;186:2514–22.

    PubMed  CAS  Google Scholar 

  • Tatematsu M, Ishii A, Oshiumi H, Horiuchi M, Inagaki F, Seya T, et al. A molecular mechanism for toll-IL-1 receptor domain-containing adaptor molecule-1-mediated IRF-3 activation. J Biol Chem. 2010;285:20128–36.

    PubMed  CAS  Google Scholar 

  • Ulrichts P, Bovijn C, Lievens S, Beyaert R, Tavernier J, Peelman F. Caspase-1 targets the TLR adaptor Mal at a crucial TIR-domain interaction site. J Cell Sci. 2010;123:256–65.

    PubMed  CAS  Google Scholar 

  • Yamamoto M, Sato S, Hemmi H, Sanjo H, Uematsu S, Kaisho T, et al. Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature. 2002;420:324–9.

    PubMed  CAS  Google Scholar 

  • Zhang Z, Kim T, Bao M, Facchinetti V, Jung SY, Ghaffari AA, et al. DDX1, DDX21, and DHX36 helicases form a complex with the adaptor molecule TRIF to sense dsRNA in dendritic cells. Immunity. 2011;34:866–78.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinéad M. Miggin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Cite this entry

Shevlin, E., Miggin, S.M. (2012). Toll-like Receptor Adaptor Protein Family Members. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0461-4_608

Download citation

Publish with us

Policies and ethics