Skip to main content

PTPN3/PTPN4

  • Reference work entry
Encyclopedia of Signaling Molecules

Synonyms

PTPH1; PTPMEG/PTPMEG1

Historical Background

A common event in cellular signal transduction pathways is the phosphorylation of proteins on tyrosine residues. Tyrosine phosphorylation is reversible. The forward reaction is mediated by protein tyrosine kinases. By contrast, the reverse reaction is performed by protein tyrosine phosphatases (PTP). The PTP family consists of 107 genes whose protein products are diverse in form and specificity (Alonso et al. 2004). PTPN3 and PTPN4 constitute two members of this family that were initially identified by PCR amplification using primers specific to conserved regions of the catalytic domain of canonical PTP. PTPN3 was initially cloned from a HeLa cell cDNA library, whereas PTPN4 was cloned from a megakaryoblastic cell line, (Gu et al. 1991; Yang and Tonks 1991). PTPN3 and PTPN4 are 50% identical and 67% homologous at the amino acid level.

Structure and Expression Studies

PTPN3 and PTPN4 are cytosolic proteins that localize to the plasma...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alonso A, Sasin J, Bottini N, Friedberg I, Osterman A, Godzik A, et al. Protein tyrosine phosphatases in the human genome. Cell. 2004;117(6):699–711.

    PubMed  CAS  Google Scholar 

  • Arimura Y, Yagi J. Comprehensive expression profiles of genes for protein tyrosine phosphatases in immune cells. Sci Signal. 2010;3(137):rs1.

    PubMed  Google Scholar 

  • Bauler TJ, Hughes ED, Arimura Y, Mustelin T, Saunders TL, King PD. Normal TCR signal transduction in mice that lack catalytically active PTPN3 protein tyrosine phosphatase. J Immunol. 2007;178(6):3680–7.

    PubMed  CAS  Google Scholar 

  • Bauler TJ, Hendriks WJ, King PD. The FERM and PDZ domain-containing protein tyrosine phosphatases, PTPN4 and PTPN3, are both dispensable for T cell receptor signal transduction. PLoS ONE. 2008;3(12):e4014.

    PubMed  Google Scholar 

  • Gjorloff-Wingren A, Saxena M, Han S, Wang X, Alonso A, Renedo M, et al. Subcellular localization of intracellular protein tyrosine phosphatases in T cells. Eur J Immunol. 2000;30(8):2412–21.

    PubMed  CAS  Google Scholar 

  • Gu MX, York JD, Warshawsky I, Majerus PW. Identification, cloning, and expression of a cytosolic megakaryocyte protein-tyrosine-phosphatase with sequence homology to cytoskeletal protein 4.1. Proc Natl Acad Sci USA. 1991;88(13):5867–71.

    PubMed  CAS  Google Scholar 

  • Han S, Williams S, Mustelin T. Cytoskeletal protein tyrosine phosphatase PTPH1 reduces T cell antigen receptor signaling. Eur J Immunol. 2000;30(5):1318–25.

    PubMed  CAS  Google Scholar 

  • Hironaka K, Umemori H, Tezuka T, Mishina M, Yamamoto T. The protein-tyrosine phosphatase PTPMEG interacts with glutamate receptor delta 2 and epsilon subunits. J Biol Chem. 2000;275(21):16167–73.

    PubMed  CAS  Google Scholar 

  • Hou SW, Zhi HY, Pohl N, Loesch M, Qi XM, Li RS, et al. PTPH1 dephosphorylates and cooperates with p38gamma MAPK to increase ras oncogenesis through PDZ-mediated interaction. Cancer Res. 2010;70(7):2901–10.

    PubMed  CAS  Google Scholar 

  • Jespersen T, Gavillet B, van Bemmelen MX, Cordonier S, Thomas MA, Staub O, et al. Cardiac sodium channel Na(v)1.5 interacts with and is regulated by the protein tyrosine phosphatase PTPH1. Biochem Biophys Res Commun. 2006;348(4):1455–62.

    PubMed  CAS  Google Scholar 

  • Jing M, Bohl J, Brimer N, Kinter M, Vande Pol SB. Degradation of tyrosine phosphatase PTPN3 (PTPH1) by association with oncogenic human papillomavirus E6 proteins. J Virol. 2007;81(5):2231–9.

    PubMed  CAS  Google Scholar 

  • Kina S, Tezuka T, Kusakawa S, Kishimoto Y, Kakizawa S, Hashimoto K, et al. Involvement of protein-tyrosine phosphatase PTPMEG in motor learning and cerebellar long-term depression. Eur J Neurosci. 2007;26(8):2269–78.

    PubMed  Google Scholar 

  • Pasquali C, Curchod ML, Walchli S, Espanel X, Guerrier M, Arigoni F, et al. Identification of protein tyrosine phosphatases with specificity for the ligand-activated growth hormone receptor. Mol Endocrinol. 2003;17(11):2228–39.

    PubMed  CAS  Google Scholar 

  • Patrignani C, Magnone MC, Tavano P, Ardizzone M, Muzio V, Greco B, et al. Knockout mice reveal a role for protein tyrosine phosphatase H1 in cognition. Behav Brain Funct. 2008;4:36.

    PubMed  Google Scholar 

  • Patrignani C, Lafont DT, Muzio V, Greco B, Hooft van Huijsduijnen R, Zaratin PF. Characterization of protein tyrosine phosphatase H1 knockout mice in animal models of local and systemic inflammation. J Inflamm. 2010;7:16. Lond.

    Google Scholar 

  • Pilecka I, Patrignani C, Pescini R, Curchod ML, Perrin D, Xue Y, et al. Protein-tyrosine phosphatase H1 controls growth hormone receptor signaling and systemic growth. J Biol Chem. 2007;282(48):35405–15.

    PubMed  CAS  Google Scholar 

  • Prehaud C, Wolff N, Terrien E, Lafage M, Megret F, Babault N, et al. Attenuation of rabies virulence: takeover by the cytoplasmic domain of its envelope protein. Sci Signal. 2010;3(105):ra5.

    PubMed  Google Scholar 

  • Sozio MS, Mathis MA, Young JA, Walchli S, Pitcher LA, Wrage PC, et al. PTPH1 is a predominant protein-tyrosine phosphatase capable of interacting with and dephosphorylating the T cell receptor zeta subunit. J Biol Chem. 2004;279(9):7760–9.

    PubMed  CAS  Google Scholar 

  • Wang Z, Shen D, Parsons DW, Bardelli A, Sager J, Szabo S, et al. Mutational analysis of the tyrosine phosphatome in colorectal cancers. Science. 2004;304(5674):1164–6.

    PubMed  CAS  Google Scholar 

  • Whited JL, Robichaux MB, Yang JC, Garrity PA. Ptpmeg is required for the proper establishment and maintenance of axon projections in the central brain of Drosophila. Development. 2007;134(1):43–53.

    PubMed  CAS  Google Scholar 

  • Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ, et al. The genomic landscapes of human breast and colorectal cancers. Science. 2007;318(5853):1108–13.

    PubMed  CAS  Google Scholar 

  • Yang Q, Tonks NK. Isolation of a cDNA clone encoding a human protein-tyrosine phosphatase with homology to the cytoskeletal-associated proteins band 4.1, ezrin, and talin. Proc Natl Acad Sci USA. 1991;88(14):5949–53.

    PubMed  CAS  Google Scholar 

  • Young JA, Becker AM, Medeiros JJ, Shapiro VS, Wang A, Farrar JD, et al. The protein tyrosine phosphatase PTPN4/PTP-MEG1, an enzyme capable of dephosphorylating the TCR ITAMs and regulating NF-kappaB, is dispensable for T cell development and/or T cell effector functions. Mol Immunol. 2008;45(14):3756–66.

    PubMed  CAS  Google Scholar 

  • Zhang SH, Kobayashi R, Graves PR, Piwnica-Worms H, Tonks NK. Serine phosphorylation-dependent association of the band 4.1-related protein-tyrosine phosphatase PTPH1 with 14-3-3beta protein. J Biol Chem. 1997;272(43):27281–7.

    PubMed  CAS  Google Scholar 

  • Zhang SH, Liu J, Kobayashi R, Tonks NK. Identification of the cell cycle regulator VCP (p97/CDC48) as a substrate of the band 4.1-related protein-tyrosine phosphatase PTPH1. J Biol Chem. 1999;274(25):17806–12.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip D. King .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Cite this entry

Bauler, T.J., King, P.D. (2012). PTPN3/PTPN4. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0461-4_535

Download citation

Publish with us

Policies and ethics