Encyclopedia of Signaling Molecules

2012 Edition
| Editors: Sangdun Choi

P2Y14 Receptor

  • Kenneth A. Jacobson
  • M. P. Suresh Jayasekara
  • Zhan-Guo Gao
  • Francesca Deflorian
Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-0461-4_471

Synonyms

Historical Background

Extracellular purine and pyrimidine nucleotides act as signaling molecules through the activation of P2X ion channels and P2Y G protein-coupled receptors (GPCRs) (Abbracchio et al. 2006). Among the eight members of the P2Y receptor family, four respond to extracellular uracil nucleotides: P2Y2, P2Y4, P2Y6, and P2Y14 receptors. None of the P2X ion channels are substantially activated by uracil nucleotides.

P2Y 2, P2Y 4, and P2Y 6 receptors belong to the P2Y 1-like subgroup of G q-coupled receptors, and the P2Y 14 receptor belongs to the P2Y 12-like subgroup that couples to  G protein αi to inhibit  adenylyl cyclase. The P2Y 14 receptor is distributed in various tissues, that is, placenta, adipose, stomach, intestine, brain, spleen, thymus, lung, heart, placenta, mast cells, and discrete brain regions (Harden et al. 2010). It is activated by uridine-5′-diphosphoglucose (UDPG, 1, Fig.  1), other endogenous UDP-sugars, and uridine-5′-diphosphate...
This is a preview of subscription content, log in to check access

References

  1. Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, et al. International union of pharmacology LVIII. Update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev. 2006;58:281–341.PubMedGoogle Scholar
  2. Arase T, Uchida H, Kajitani T, Ono M, Tamaki K, Oda H, et al. The UDPglucose receptor P2RY14 triggers innate mucosal immunity in the female reproductive tract by inducing IL-8. J Immunol. 2009;182:7074–84.PubMedGoogle Scholar
  3. Bassil AK, Bourdu S, Townson KA, Wheeldon A, Jarvie EM, Zebda N, et al. UDP-glucose modulates gastric function through P2Y14 receptor-dependent and -independent mechanisms. Am J Physiol Gastrointest Liver Physiol. 2009;296:G923–30.PubMedGoogle Scholar
  4. Brautigam VM, Dubyak GR, Crain JM, Watters JJ. The inflammatory effects of UDP-glucose in N9 microglia are not mediated by P2Y14 receptor activation. Purinergic Signal. 2008;4:73–8.PubMedGoogle Scholar
  5. Carter RL, Fricks IP, Barrett MO, Burianek LE, Zhou Y, Ko H, et al. Quantification of Gi-mediated inhibition of adenylyl cyclase activity reveals that UDP is a potent agonist of the human P2Y14 receptor. Mol Pharmacol. 2009;76:1341–8.PubMedGoogle Scholar
  6. Chambers JK, Macdonald LE, Sarau HM, Ames RS, Freeman K, Foley JJ, et al. A G protein-coupled receptor for UDP-glucose. J Biol Chem. 2000;275:10767–71. doi:10.1074/jbc.275.15.10767.PubMedGoogle Scholar
  7. Communi D, Gonzalez NS, Detheux M, Brezillon S, Lannoy V, Parmentier M, Boeynaems JM. Identification of a novel human ADP receptor coupled to Gi. J Biol Chem. 2001;276:41479–85.PubMedGoogle Scholar
  8. Das A, Zhou Y, Ivanov AA, Carter RL, Harden TK, Jacobson KA. Enhanced potency of nucleotide-dendrimer conjugates as agonists of the P2Y14 receptor: multivalent effect in G protein-coupled receptor recognition. Bioconjug Chem. 2009;20:1650–9.PubMedGoogle Scholar
  9. Das A, Ko H, Burianek LE, Barrett MO, Harden TK, Jacobson KA. Human P2Y14 receptor agonists: Truncation of the hexose moiety of uridine-5′-diphosphoglucose and its replacement with alkyl and aryl groups. J Med Chem. 2010;53:471–80.PubMedGoogle Scholar
  10. Deflorian F, Jacobson KA. Comparison of three GPCR structural templates for modeling of the P2Y12 nucleotide receptor. J Comput Aided Mol Des. 2011;25:329–38.PubMedGoogle Scholar
  11. Fricks I, Maddiletti S, Carter R, Lazarowski ER, Nicholas RA, Jacobson KA, Harden TK. UDP is a competitive antagonist at the human P2Y14 receptor and a full agonist at the rat P2Y14 receptor. J Pharmacol Exp Therap. 2008;325:588–94.Google Scholar
  12. Gao ZG, Ding Y, Jacobson KA. UDP-glucose acting at P2Y14 receptors is a mediator of mast cell degranulation. Biochem Pharmacol. 2010;79:873–9.PubMedGoogle Scholar
  13. Gauthier JY, Belley M, Deschênes D, Fournier JF, Gagné S, Gareau Y, et al. The identification of 4,7-disubstituted naphthoic acid derivatives as UDP-competitive antagonists of P2Y14. Bioorg Med Chem Lett. 2011;21:2836–9. doi:10.1016/j.bmcl.2011.03.081.PubMedGoogle Scholar
  14. Guay D, Beaulieu C, Belley M, Crane SN, DeLuca J, Gareau Y, et al. Synthesis and SAR of pyrimidine-based, non-nucleotide P2Y14 receptor antagonists. Bioorg Med Chem Lett. 2011;21:2832–5. doi:10.1016/j.bmcl.2011.03.084.PubMedGoogle Scholar
  15. Harden TK, Sesma JI, Fricks IP, Lazarowski ER. Signalling and pharmacological properties of the P2Y14 receptor. Acta Physiol. 2010;199:149–60. doi:10.1111/j.1748-1716.2010.02116.x.Google Scholar
  16. Kreda SM, Seminario-Vidal L, Heusden C, Lazarowski ER. Thrombin-promoted release of UDP-glucose from human astrocytoma cells. Br J Pharmacol. 2008;153:1528–37.PubMedGoogle Scholar
  17. Lazarowski ER, Shea DA, Boucher RC, Harden TK. Release of cellular UDP-glucose as a potential extracellular signaling molecule. Mol Pharmacol. 2003;63:1190–7.PubMedGoogle Scholar
  18. Muller T, Bayer H, Myrtek D, Ferrari D, Sorichter S, Ziegenhagen MW, et al. The P2Y14 receptor of airway epithelial cells: coupling to intracellular Ca2+ and IL-8 secretion. Am J Respir Cell Mol Biol. 2005;33:601–9.PubMedGoogle Scholar
  19. Robichaud J, Fournier JF, Gagne S, Gauthier JY, Hamel M, Han Y, Henault M, Kargman S, Levesque JF, Yael Mamane Y, Mancini J, Morin N, Mulrooney E, Wu J, Black WC. Applying the pro-drug approach to afford highly bioavailable antagonists of P2Y14. Bioorg Med Chem Lett. 2011;21:4366–8.PubMedGoogle Scholar
  20. Sesma JI, Esther CR, Kreda SM, Jones L, O’Neal W, Nishihara S, et al. Endoplasmic reticulum/golgi nucleotide sugar transporters contribute to the cellular release of UDP-sugar signaling molecules. J Biol Chem. 2009;284:12572–83.PubMedGoogle Scholar
  21. Zippel N, Limbach CA, Ratajski N, Urban C, Pansky A, Luparello C, Kassack MU, Tobiasch E. Purinergic receptors influence the differentiation of human mesenchymal stem cells. Stem Cells Dev. 2011. doi:10.1089/scd.2010.0576.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Kenneth A. Jacobson
    • 1
  • M. P. Suresh Jayasekara
    • 2
  • Zhan-Guo Gao
    • 3
  • Francesca Deflorian
    • 4
  1. 1.Laboratory of Bioorganic Chemistry & Molecular Recognition SectionNational Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of HealthBethesdaUSA
  2. 2.Laboratory of Bioorganic Chemistry & Molecular Recognition SectionNational Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of HealthBethesdaUSA
  3. 3.Laboratory of Bioorganic Chemistry & Molecular Recognition SectionNational Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of HealthBethesdaUSA
  4. 4.Laboratory of Bioorganic Chemistry & Molecular Recognition SectionNational Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of HealthBethesdaUSA