Encyclopedia of Signaling Molecules

2012 Edition
| Editors: Sangdun Choi

Phosphatidylinositol 5-phosphate 4-kinase

  • Jonathan H. Clarke
  • Robin F. Irvine
Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-0461-4_418

Synonyms

Historical Background

Phosphatidylinositol 5-phosphate 4-kinase (PIP4K) is an enzyme activity capable of converting a mono-phosphorylated lipid substrate into a bis-phosphorylated product, a reaction that is fundamental in the maintenance of the cellular phosphoinositide (PI) cycle. PIP4K catalyzes the addition of a phosphate group to position D-4 of the inositol head-group of PtdIns5 P (Figs.  1 and 2). Downstream effects of signaling molecules generated by the PI cycle are diverse and include vesicle trafficking, ion channel activity, cytoskeletal dynamics, cell differentiation, proliferation, and apoptosis (Toker 2002; Irvine 2003; Di Paolo and De Camilli 2006; Gonzales and Anderson 2006).
This is a preview of subscription content, log in to check access.

References

  1. Anderson RA, Boronenkov IV, Doughman SD, Kunz J, Loijens JC. Phosphatidylinositol phosphate kinases, a multifaceted family of signaling enzymes. J Biol Chem. 1999;274(15):9907–10.PubMedGoogle Scholar
  2. Bazenet CE, Ruano AR, Brockman JL, Anderson RA. The human erythrocyte contains two forms of phosphatidylinositol-4- phosphate 5-kinase which are differentially active toward membranes. J Biol Chem. 1990;265(29):18012–22.PubMedGoogle Scholar
  3. Boronenkov IV, Anderson RA. The sequence of phosphatidylinositol-4-phosphate 5-kinase defines a novel family of lipid kinases. J Biol Chem. 1995;270(7):2881–4.PubMedGoogle Scholar
  4. Bultsma Y, Keune WJ, Divecha N. PIP4Kbeta interacts with and modulates nuclear localization of the high-activity PtdIns5P-4-kinase isoform PIP4Kalpha. Biochem J. 2010;430(2):223–35.PubMedGoogle Scholar
  5. Bunce MW, Boronenkov IV, Anderson RA. Coordinated activation of the nuclear ubiquitin ligase Cul3-SPOP by the generation of phosphatidylinositol 5-phosphate. J Biol Chem. 2008;283(13):8678–86.PubMedGoogle Scholar
  6. Carricaburu V, Lamia KA, Lo E, Favereaux L, Payrastre B, Cantley LC, et al. The phosphatidylinositol (PI)-5-phosphate 4-kinase type II enzyme controls insulin signaling by regulating PI-3,4,5-trisphosphate degradation. Proc Natl Acad Sci U S A. 2003;100(17):9867–72.PubMedGoogle Scholar
  7. Castellino AM, Chao MV. Differential association of phosphatidylinositol-5-phosphate 4-kinase with the EGF/ErbB family of receptors. Cell Signal. 1999;11(3):171–7.PubMedGoogle Scholar
  8. Castellino AM, Parker GJ, Boronenkov IV, Anderson RA, Chao MV. A novel interaction between the juxtamembrane region of the p55 tumor necrosis factor receptor and phosphatidylinositol-4-phosphate 5-kinase. J Biol Chem. 1997;272(9):5861–70.PubMedGoogle Scholar
  9. Chang JD, Field SJ, Rameh LE, Carpenter CL, Cantley LC. Identification and characterization of a phosphoinositide phosphate kinase homolog. J Biol Chem. 2004;279(12):11672–9.PubMedGoogle Scholar
  10. Ciruela A, Hinchliffe KA, Divecha N, Irvine RF. Nuclear targeting of the beta isoform of type II phosphatidylinositol phosphate kinase (phosphatidylinositol 5-phosphate 4-kinase) by its alpha-helix 7. Biochem J. 2000;346(Pt 3):587–91.PubMedGoogle Scholar
  11. Clarke JH, Richardson JP, Hinchliffe KA, Irvine RF. Type II PtdInsP kinases: location, regulation and function. Biochem Soc Symp. 2007;74:149–59.PubMedGoogle Scholar
  12. Clarke JH, Emson PC, Irvine RF. Localization of phosphatidylinositol phosphate kinase IIgamma in kidney to a membrane trafficking compartment within specialized cells of the nephron. Am J Physiol Renal Physiol. 2008;295(5):F1422–30.PubMedGoogle Scholar
  13. Clarke JH, Emson PC, Irvine RF. Distribution and neuronal expression of phosphatidylinositol phosphate kinase II gamma in the mouse brain. J Comp Neurol. 2009;517(3):296–312.PubMedGoogle Scholar
  14. Clarke JH, Wang M, Irvine RF. Localization, regulation and function of type II phosphatidylinositol 5-phosphate 4-kinases. Adv Enzyme Regul. 2010;50(1):12–8.PubMedGoogle Scholar
  15. Di Paolo G, De Camilli P. Phosphoinositides in cell regulation and membrane dynamics. Nature. 2006;443(7112):651–7.PubMedGoogle Scholar
  16. Divecha N, Truong O, Hsuan JJ, Hinchliffe KA, Irvine RF. The cloning and sequence of the C isoform of PtdIns4P 5-kinase. Biochem J. 1995;309(Pt 3):715–9.PubMedGoogle Scholar
  17. Gonzales ML, Anderson RA. Nuclear phosphoinositide kinases and inositol phospholipids. J Cell Biochem. 2006;97(2):252–60.PubMedGoogle Scholar
  18. Halstead JR, Jalink K, Divecha N. An emerging role for PtdIns(4,5)P2-mediated signalling in human disease. Trends Pharmacol Sci. 2005;26(12):654–60.PubMedGoogle Scholar
  19. Hinchliffe KA, Irvine RF. Regulation of type II PIP kinase by PKD phosphorylation. Cell Signal. 2006;18(11):1906–13.PubMedGoogle Scholar
  20. Hinchliffe KA, Ciruela A, Irvine RF. PIPkins1, their substrates and their products: new functions for old enzymes. Biochim Biophys Acta. 1998;1436(1–2):87–104.PubMedGoogle Scholar
  21. Hinchliffe KA, Ciruela A, Letcher AJ, Divecha N, Irvine RF. Regulation of type IIalpha phosphatidylinositol phosphate kinase localisation by the protein kinase CK2. Curr Biol. 1999;9(17):983–6.PubMedGoogle Scholar
  22. Hinchliffe KA, Giudici ML, Letcher AJ, Irvine RF. Type IIalpha phosphatidylinositol phosphate kinase associates with the plasma membrane via interaction with type I isoforms. Biochem J. 2002;363(Pt 3):563–70.PubMedGoogle Scholar
  23. Huang Z, Guo XX, Chen SX, Alvarez KM, Bell MW, Anderson RE. Regulation of type II phosphatidylinositol phosphate kinase by tyrosine phosphorylation in bovine rod outer segments. Biochemistry. 2001;40(15):4550–9.PubMedGoogle Scholar
  24. Irvine RF. Nuclear lipid signalling. Nat Rev Mol Cell Biol. 2003;4(5):349–60.PubMedGoogle Scholar
  25. Itoh T, Ijuin T, Takenawa T. A novel phosphatidylinositol-5-phosphate 4-kinase (phosphatidylinositol- phosphate kinase IIgamma) is phosphorylated in the endoplasmic reticulum in response to mitogenic signals. J Biol Chem. 1998;273(32):20292–9.PubMedGoogle Scholar
  26. Jones DR, Bultsma Y, Keune WJ, Halstead JR, Elouarrat D, Mohammed S, et al. Nuclear PtdIns5P as a transducer of stress signaling: an in vivo role for PIP4Kbeta. Mol Cell. 2006;23(5):685–95.PubMedGoogle Scholar
  27. Kunz J, Wilson MP, Kisseleva M, Hurley JH, Majerus PW, Anderson RA. The activation loop of phosphatidylinositol phosphate kinases determines signaling specificity. Mol Cell. 2000;5(1):1–11.PubMedGoogle Scholar
  28. Lamia KA, Peroni OD, Kim YB, Rameh LE, Kahn BB, Cantley LC. Increased insulin sensitivity and reduced adiposity in phosphatidylinositol 5-phosphate 4-kinase beta-/- mice. Mol Cell Biol. 2004;24(11):5080–7.PubMedGoogle Scholar
  29. Luoh SW, Venkatesan N, Tripathi R. Overexpression of the amplified Pip4k2beta gene from 17q11-12 in breast cancer cells confers proliferation advantage. Oncogene. 2004;23(7):1354–63.PubMedGoogle Scholar
  30. McCrea HJ, De Camilli P. Mutations in phosphoinositide metabolizing enzymes and human disease. Physiology (Bethesda). 2009;24:8–16.Google Scholar
  31. Mueller-Roeber B, Pical C. Inositol phospholipid metabolism in Arabidopsis. Characterized and putative isoforms of inositol phospholipid kinase and phosphoinositide-specific phospholipase C. Plant Physiol. 2002;130(1):22–46.PubMedGoogle Scholar
  32. O’Connell DJ, Rozenvayn N, Flaumenhaft R. Phosphatidylinositol 4,5-bisphosphate regulates activation-induced platelet microparticle formation. Biochemistry. 2005;44(16):6361–70.PubMedGoogle Scholar
  33. Park S, Lee W, You KH, Kim H, Suh JM, Chung HK, et al. Regulation of phosphatidylinositol-phosphate kinase IIgamma gene transcription by thyroid-stimulating hormone in thyroid cells. J Mol Endocrinol. 2001;26(2):127–33.PubMedGoogle Scholar
  34. Rameh LE, Tolias KF, Duckworth BC, Cantley LC. A new pathway for synthesis of phosphatidylinositol-4,5-bisphosphate. Nature. 1997;390(6656):192–6.PubMedGoogle Scholar
  35. Rao VD, Misra S, Boronenkov IV, Anderson RA, Hurley JH. Structure of type IIbeta phosphatidylinositol phosphate kinase: a protein kinase fold flattened for interfacial phosphorylation. Cell. 1998;94(6):829–39.PubMedGoogle Scholar
  36. Richardson JP, Wang M, Clarke JH, Patel KJ, Irvine RF. Genomic tagging of endogenous type IIbeta phosphatidylinositol 5-phosphate 4-kinase in DT40 cells reveals a nuclear localisation. Cell Signal. 2007;19(6):1309–14.PubMedGoogle Scholar
  37. Rozenvayn N, Flaumenhaft R. Protein kinase C mediates translocation of type II phosphatidylinositol 5-phosphate 4-kinase required for platelet alpha-granule secretion. J Biol Chem. 2003;278(10):8126–34.PubMedGoogle Scholar
  38. Schleiermacher G, Bourdeaut F, Combaret V, Picrron G, Raynal V, Aurias A, et al. Stepwise occurrence of a complex unbalanced translocation in neuroblastoma leading to insertion of a telomere sequence and late chromosome 17q gain. Oncogene. 2005;24(20):3377–84.PubMedGoogle Scholar
  39. Singhal RL, Prajda N, Yeh YA, Weber G. 1-Phosphatidylinositol 4-phosphate 5-kinase (EC 2.7.1.68): a proliferation- and malignancy-linked signal transduction enzyme. Cancer Res. 1994;54(21):5574–8.PubMedGoogle Scholar
  40. Stopkova P, Saito T, Fann CS, Papolos DF, Vevera J, Paclt I, et al. Polymorphism screening of PIP5K2A: a candidate gene for chromosome 10p-linked psychiatric disorders. Am J Med Genet B Neuropsychiatr Genet. 2003;123B(1):50–8.PubMedGoogle Scholar
  41. Toker A. Phosphoinositides and signal transduction. Cell Mol Life Sci. 2002;59(5):761–79.PubMedGoogle Scholar
  42. Wang M, Bond NJ, Letcher AJ, Richardson JP, Lilley KS, Irvine RF, et al. Genomic tagging reveals a random association of endogenous PtdIns5P 4-kinases IIalpha and IIbeta and a partial nuclear localization of the IIalpha isoform. Biochem J. 2010;430(2):215–21.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of PharmacologyUniversity of CambridgeCambridgeUK