Encyclopedia of Signaling Molecules

2012 Edition
| Editors: Sangdun Choi

RSK (p90 Ribosomal S6 Kinase)

Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-0461-4_382

Synonyms

Historical Background

The p90 ribosomal S6 kinase (RSK) family comprises four mammalian Ser/Thr kinases (RSK1-4) (Anjum and Blenis 2008; Carriere et al. 2008). The first RSK family member was identified as a kinase activity in maturating Xenopus laevis oocytes that phosphorylated the 40S ribosomal subunit protein S6 (rpS6) (Erikson and Maller 1985, 1986). Although the p70 ribosomal S6 kinases 1 and 2 (S6K1 and S6K2) were later shown to be the predominant S6 kinases operating in somatic cells (Blenis et al. 1991; Chung et al. 1992), RSK1 and RSK2 were found to phosphorylate rpS6 in response to  MAP kinase pathway activation (Cohen et al. 2007; Roux et al. 2007). Interestingly, whereas S6K1/2 were found to phosphorylate all sites on rpS6 (Ser235, Ser236, Ser240, and Ser244), RSK1 and RSK2 were shown to specifically phosphorylate Ser235 and Ser236 (Roux et al. 2007). The role of this specific regulation is unknown, but some evidence suggests...

This is a preview of subscription content, log in to check access

References

  1. Anjum R, Blenis J. The RSK family of kinases: emerging roles in cellular signalling. Nat Rev Mol Cell Biol. 2008;9:747–58.PubMedCrossRefGoogle Scholar
  2. Anjum R, Roux PP, Ballif BA, Gygi SP, Blenis J. The tumor suppressor DAP kinase is a target of RSK-mediated survival signaling. Curr Biol. 2005;15:1762–7.PubMedCrossRefGoogle Scholar
  3. Bain J, Plater L, Elliott M, Shpiro N, Hastie CJ, McLauchlan H, Klevernic I, Arthur JS, Alessi DR, Cohen P. The selectivity of protein kinase inhibitors: a further update. Biochem J. 2007;408:297–315.PubMedCrossRefGoogle Scholar
  4. Bjorbaek C, Zhao Y, Moller DE. Divergent functional roles for p90rsk kinase domains. J Biol Chem. 1995;270:18848–52.PubMedCrossRefGoogle Scholar
  5. Blenis J, Chung J, Erikson E, Alcorta DA, Erikson RL. Distinct mechanisms for the activation of the RSK kinases/MAP2 kinase/pp 90rsk and pp70–S6 kinase signaling systems are indicated by inhibition of protein synthesis. Cell Growth Differ. 1991;2:279–85.PubMedGoogle Scholar
  6. Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev. 2011;75:50–83.PubMedCrossRefGoogle Scholar
  7. Carriere A, Ray H, Blenis J, Roux PP. The RSK factors of activating the Ras/MAPK signaling cascade. Front Biosci. 2008;13:4258–75.PubMedCrossRefGoogle Scholar
  8. Chung J, Kuo CJ, Crabtree GR, Blenis J. Rapamycin-FKBP specifically blocks growth-dependent activation of and signaling by the 70 kd S6 protein kinases. Cell. 1992;69:1227–36.PubMedCrossRefGoogle Scholar
  9. Cohen MS, Zhang C, Shokat KM, Taunton J. Structural bioinformatics-based design of selective, irreversible kinase inhibitors. Science. 2005;308:1318–21.PubMedCrossRefGoogle Scholar
  10. Cohen MS, Hadjivassiliou H, Taunton J. A clickable inhibitor reveals context-dependent autoactivation of p90 RSK. Nat Chem Biol. 2007;3:156–60.PubMedCrossRefGoogle Scholar
  11. Dalby KN, Morrice N, Caudwell FB, Avruch J, Cohen P. Identification of regulatory phosphorylation sites in mitogen-activated protein kinase (MAPK)-activated protein kinase-1a/p90rsk that are inducible by MAPK. J Biol Chem. 1998;273:1496–505.PubMedCrossRefGoogle Scholar
  12. David JP, Mehic D, Bakiri L, Schilling AF, Mandic V, Priemel M, Idarraga MH, Reschke MO, Hoffmann O, Amling M, Wagner EF. Essential role of RSK2 in c-Fos-dependent osteosarcoma development. J Clin Invest. 2005;115:664–72.PubMedGoogle Scholar
  13. Dufresne SD, Bjorbaek C, El-Haschimi K, Zhao Y, Aschenbach WG, Moller DE, Goodyear LJ. Altered extracellular signal-regulated kinase signaling and glycogen metabolism in skeletal muscle from p90 ribosomal S6 kinase 2 knockout mice. Mol Cell Biol. 2001;21:81–7.PubMedCrossRefGoogle Scholar
  14. Erikson E, Maller JL. A protein kinase from Xenopus eggs specific for ribosomal protein S6. Proc Natl Acad Sci USA. 1985;82:742–6.PubMedCrossRefGoogle Scholar
  15. Erikson E, Maller JL. Purification and characterization of a protein kinase from Xenopus eggs highly specific for ribosomal protein S6. J Biol Chem. 1986;261:350–5.PubMedGoogle Scholar
  16. Frodin M, Jensen CJ, Merienne K, Gammeltoft S. A phosphoserine-regulated docking site in the protein kinase RSK2 that recruits and activates PDK1. EMBO J. 2000;19:2924–34.PubMedCrossRefGoogle Scholar
  17. Frodin M, Antal TL, Dummler BA, Jensen CJ, Deak M, Gammeltoft S, Biondi RM. A phosphoserine/threonine-binding pocket in AGC kinases and PDK1 mediates activation by hydrophobic motif phosphorylation. EMBO J. 2002;21:5396–407.PubMedCrossRefGoogle Scholar
  18. Hsiao K-M, Chou S-Y, Shih S-J, Ferrell Jr JE. Evidence that inactive p42 mitogen-activated protein kinase and inactive Rsk exist as a heterodimer in vivo. Proc Natl Acad Sci USA. 1994;91:5480–4.PubMedCrossRefGoogle Scholar
  19. Jensen CJ, Buch MB, Krag TO, Hemmings BA, Gammeltoft S, Frodin M. 90-kDa ribosomal S6 kinase is phosphorylated and activated by 3-phosphoinositide-dependent protein kinase-1. J Biol Chem. 1999;274:27168–76.PubMedCrossRefGoogle Scholar
  20. Kang S, Dong S, Guo A, Ruan H, Lonial S, Khoury HJ, Gu TL, Chen J. Epidermal growth factor stimulates RSK2 activation through activation of the MEK/ERK pathway and src-dependent tyrosine phosphorylation of RSK2 at Tyr-529. J Biol Chem. 2008;283:4652–7.PubMedCrossRefGoogle Scholar
  21. Meyuhas O. Physiological roles of ribosomal protein S6: one of its kind. Int Rev Cell Mol Biol. 2008;268:1–37.PubMedCrossRefGoogle Scholar
  22. Newton AC. Regulation of the ABC kinases by phosphorylation: protein kinase C as a paradigm. Biochem J. 2003;370:361–71.PubMedCrossRefGoogle Scholar
  23. Pereira PM, Schneider A, Pannetier S, Heron D, Hanauer A. Coffin-Lowry syndrome. Eur J Hum Genet. 2010;18:627–33.PubMedCrossRefGoogle Scholar
  24. Poirier R, Jacquot S, Vaillend C, Soutthiphong AA, Libbey M, Davis S, Laroche S, Hanauer A, Welzl H, Lipp HP, Wolfer DP. Deletion of the Coffin-Lowry syndrome gene Rsk2 in mice is associated with impaired spatial learning and reduced control of exploratory behavior. Behav Genet. 2007;37:31–50.PubMedCrossRefGoogle Scholar
  25. Putz G, Bertolucci F, Raabe T, Zars T, Heisenberg M. The S6KII (rsk) gene of Drosophila melanogaster differentially affects an operant and a classical learning task. J Neurosci. 2004;24:9745–51.PubMedCrossRefGoogle Scholar
  26. Richards SA, Fu J, Romanelli A, Shimamura A, Blenis J. Ribosomal S6 kinase 1 (RSK1) activation requires signals dependent on and independent of the MAP kinase ERK. Curr Biol. 1999;9:810–20.PubMedCrossRefGoogle Scholar
  27. Romeo Y, Roux PP. Paving the way for targeting RSK in cancer. Expert Opin Ther Targets. 2011;15:5–9.PubMedCrossRefGoogle Scholar
  28. Roux PP, Richards SA, Blenis J. Phosphorylation of p90 ribosomal S6 kinase (RSK) regulates extracellular signal-regulated kinase docking and RSK activity. Mol Cell Biol. 2003;23:4796–804.PubMedCrossRefGoogle Scholar
  29. Roux PP, Ballif BA, Anjum R, Gygi SP, Blenis J. Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc Natl Acad Sci USA. 2004;101:13489–94.PubMedCrossRefGoogle Scholar
  30. Roux PP, Shahbazian D, Vu H, Holz MK, Cohen MS, Taunton J, Sonenberg N, Blenis J. RAS/ERK signaling promotes site-specific ribosomal protein S6 phosphorylation via RSK and stimulates cap-dependent translation. J Biol Chem. 2007;282:14056–64.PubMedCrossRefGoogle Scholar
  31. Sapkota GP, Cummings L, Newell FS, Armstrong C, Bain J, Frodin M, Grauert M, Hoffmann M, Schnapp G, Steegmaier M, Cohen P, Alessi DR. BI-D1870 is a specific inhibitor of the p90 RSK (ribosomal S6 kinase) isoforms in vitro and in vivo. Biochem J. 2007;401:29–38.PubMedCrossRefGoogle Scholar
  32. Shimamura A, Ballif BA, Richards SA, Blenis J. Rsk1 mediates a MEK-MAP kinase cell survival signal. Curr Biol. 2000;10:127–35.PubMedCrossRefGoogle Scholar
  33. Smith JA, Poteet-Smith CE, Malarkey K, Sturgill TW. Identification of an extracellular signal-regulated kinase (ERK) docking site in ribosomal S6 kinase, a sequence critical for activation by ERK in vivo. J Biol Chem. 1999;274:2893–8.PubMedCrossRefGoogle Scholar
  34. Smith JA, Poteet-Smith CE, Xu Y, Errington TM, Hecht SM, Lannigan DA. Identification of the first specific inhibitor of p90 ribosomal S6 kinase (RSK) reveals an unexpected role for RSK in cancer cell proliferation. Cancer Res. 2005;65:1027–34.PubMedCrossRefGoogle Scholar
  35. Sutherland C, Campbell DG, Cohen P. Identification of insulin-stimulated protein kinase-1 as the rabbit equivalent of rskmo-2: identification of two threonines phosphorylated during activation by mitogen-activated protein kinase. Eur J Biochem. 1993;212:581–8.PubMedCrossRefGoogle Scholar
  36. Thomas GM, Rumbaugh GR, Harrar DB, Huganir RL. Ribosomal S6 kinase 2 interacts with and phosphorylates PDZ domain-containing proteins and regulates AMPA receptor transmission. Proc Natl Acad Sci USA. 2005;102(42):15006–11.PubMedCrossRefGoogle Scholar
  37. Trivier E, De Cesare D, Jacquot S, Pannetier S, Zackai E, Young I, Mandel JL, Sassone-Corsi P, Hanauer A. Mutations in the kinase Rsk-2 associated with Coffin-Lowry syndrome. Nature. 1996;384:567–70.PubMedCrossRefGoogle Scholar
  38. Vik TA, Ryder JW. Identification of serine 380 as the major site of autophosphorylation of Xenopus pp 90rsk. Biochem Biophys Res Commun. 1997;235:398–402.PubMedCrossRefGoogle Scholar
  39. Zaru R, Ronkina N, Gaestel M, Arthur JS, Watts C. The MAPK-activated kinase Rsk controls an acute Toll-like receptor signaling response in dendritic cells and is activated through two distinct pathways. Nat Immunol. 2007;8:1227–35.PubMedCrossRefGoogle Scholar
  40. Zhao Y, Bjorbaek C, Moller DE. Regulation and interaction of pp 90(rsk) isoforms with mitogen-activated protein kinases. J Biol Chem. 1996;271:29773–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Pathology and Cell BiologyInstitute for Research in Immunology and Cancer (IRIC), Université de MontréalMontrealCanada