Encyclopedia of Signaling Molecules

2012 Edition
| Editors: Sangdun Choi

Relaxin Family Peptide Receptors (RXFP) 1 and 2

  • Roger J. Summers
  • Michelle L. Halls
  • Emma T. van der Westhuizen
Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-0461-4_362

Synonyms

Historical Background: Relaxin Family Peptides and Their Receptors

Relaxin was one of the first reproductive hormones to be identified, following the observation that a factor in the serum of pregnant guinea pigs induced relaxation of the birth canal (Hisaw 1926). Until recently, relaxin was considered purely a hormone of pregnancy and little was known of its potential roles in males and nonpregnant females; the purification of relaxin from animal sources led to the determination of its peptide structure, biological actions, and development of reliable bioassays (Schwabe and McDonald 1977; James et al. 1977; John et al. 1981), and this knowledge precipitated the use of recombinant DNA techniques to clone the rat (Hudson et al. 1981) and pig (Haley et al. 1982) relaxin genes, followed soon after by human gene-1 (RLN1) (Hudson et al. 1983) and gene-2 relaxin (RLN2) (Hudson et al. 1984). The identification of additional relaxin peptides...

This is a preview of subscription content, log in to check access.

References

  1. Bathgate RA, Ivell R, Sanborn BM, Sherwood OD, Summers RJ. International union of pharmacology LVII: recommendations for the nomenclature of receptors for relaxin family peptides. Pharmacol Rev. 2006;58(1):7–31.PubMedCrossRefGoogle Scholar
  2. Bullesbach EE, Schwabe C. The trap-like relaxin-binding site of LGR7. J Biol Chem. 2005;280:14051–6.PubMedCrossRefGoogle Scholar
  3. Bullesbach EE, Schwabe C. The mode of interaction of the relaxin-like factor (RLF) with the leucine-rich repeat G protein-activated receptor 8. J Biol Chem. 2006;281:26136–43.PubMedCrossRefGoogle Scholar
  4. Du XJ, Bathgate RA, Samuel CS, Dart AM, Summers RJ. Cardiovascular effects of relaxin: from basic science to clinical therapy. Nat Rev Cardiol. 2010;7(1):48–58.PubMedCrossRefGoogle Scholar
  5. Ferlin A, Pepe A, Facciolli A, Gianesello L, Foresta C. Relaxin stimulates osteoclast differentiation and activation. Bone. 2010;46(2):504–13.PubMedCrossRefGoogle Scholar
  6. Haley J, Hudson P, Scanlon D, John M, Cronk M, Shine J, et al. Porcine relaxin: molecular cloning and cDNA structure. DNA. 1982;1(2):155–62.PubMedCrossRefGoogle Scholar
  7. Halls ML, Bond CP, Sudo S, Kumagai J, Ferraro T, Layfield S, et al. Multiple binding sites revealed by interaction of relaxin family peptides with native and chimeric relaxin family peptide receptors 1 and 2 (LGR7 and LGR8). J Pharmacol Exp Ther. 2005;313(2):677–87.PubMedCrossRefGoogle Scholar
  8. Halls ML, van der Westhuizen ET, Bathgate RA, Summers RJ. Relaxin family peptide receptors–former orphans reunite with their parent ligands to activate multiple signalling pathways. Br J Pharmacol. 2007;150(6):677–91.PubMedCrossRefGoogle Scholar
  9. Hisaw FL. Experimental relaxation of the pubic ligament of the guinea pig. Proc Soc Exp Biol Med. 1926;23:661–3.Google Scholar
  10. Hopkins EJ, Layfield S, Ferraro T, Bathgate RA, Gooley PR. The NMR solution structure of the relaxin (RXFP1) receptor lipoprotein receptor class A module and identification of key residues in the N-terminal region of the module that mediate receptor activation. J Biol Chem. 2007;282(6):4172–84.PubMedCrossRefGoogle Scholar
  11. Hsu SY, Kudo M, Chen T, Nakabayashi K, Bhalla A, van der Spek PJ, et al. The three subfamilies of leucine-rich repeat-containing G protein-coupled receptors (LGR): identification of LGR6 and LGR7 and the signaling mechanism for LGR7. Mol Endocrinol. 2000;14(8):1257–71.PubMedCrossRefGoogle Scholar
  12. Hsu SY, Nakabayashi K, Nishi S, Kumagai J, Kudo M, Sherwood OD, et al. Activation of orphan receptors by the hormone relaxin. Science. 2002;25(295):637–8.Google Scholar
  13. Hudson P, Haley J, Cronk M, Shine J, Niall H. Molecular cloning and characterization of cDNA sequences coding for rat relaxin. Nature. 1981;291(5811):127–31.PubMedCrossRefGoogle Scholar
  14. Hudson P, Haley J, John M, Cronk M, Crawford R, Haralambidis J, et al. Structure of a genomic clone encoding biologically active human relaxin. Nature. 1983;301(5901):628–31.PubMedCrossRefGoogle Scholar
  15. Hudson P, John M, Crawford R, Haralambidis J, Scanlon D, Gorman J, et al. Relaxin gene expression in human ovaries and the predicted structure of a human preprorelaxin by analysis of cDNA clones. EMBO J. 1984;3(10):2333–9.PubMedGoogle Scholar
  16. Ivell R, Anand-Ivell R. Biology of insulin-like factor 3 in human reproduction. Hum Reprod Update. 2009;15(4):463–76.PubMedCrossRefGoogle Scholar
  17. James R, Niall H, Kwok S, Bryand-Greenwood G. Primary structure of porcine relaxin: homology with insulin and related growth factors. Nature. 1977;267(5611):544–6.PubMedCrossRefGoogle Scholar
  18. John MJ, Borjesson BW, Walsh JR, Niall HD. Limited sequence homology between porcine and rat relaxins: implications for physiological studies. Endocrinology. 1981;108(2):726–9.PubMedCrossRefGoogle Scholar
  19. Kern A, Agoulnik AI, Bryant-Greenwood GD. The low-density lipoprotein class A module of the relaxin receptor (leucine-rich repeat containing G-protein coupled receptor 7): its role in signaling and trafficking to the cell membrane. Endocrinology. 2007;148(3):1181–94.PubMedCrossRefGoogle Scholar
  20. Klonisch T, Bialek J, Radestock Y, Hoang-Vu C, Hombach-Klonisch S. Relaxin-like ligand-receptor systems are autocrine/paracrine effectors in tumor cells and modulate cancer progression and tissue invasiveness. Adv Exp Med Biol. 2007;612:104–18.PubMedCrossRefGoogle Scholar
  21. Kumagai J, Hsu SY, Matsumi H, Roh JS, Fu P, Wade JD, et al. INSL3/Leydig insulin-like peptide activates the LGR8 receptor important in testis descent. J Biol Chem. 2002;277(35):31283–6.PubMedCrossRefGoogle Scholar
  22. Rosengren KJ, Lin F, Bathgate RA, Tregear GW, Daly NL, Wade JD, et al. Solution structure and novel insights into the determinants of the receptor specificity of human relaxin-3. J Biol Chem. 2006;281(9):5845–51.PubMedCrossRefGoogle Scholar
  23. Schwabe C, McDonald JK. Primary structure of the B-chain of porcine relaxin. Biochem Biophys Res Commun. 1977;75(2):503–10.PubMedCrossRefGoogle Scholar
  24. Scott DJ, Wilkinson TN, Zhang S, Ferraro T, Wade JD, Tregear GW, et al. Defining the LGR8 residues involved in binding insulin-like peptide 3. Mol Endocrinol. 2007;21(7):1699–712.PubMedCrossRefGoogle Scholar
  25. Sherwood OD. Relaxin’s physiological roles and other diverse actions. Endocr Rev. 2004;25(2):205–34.PubMedCrossRefGoogle Scholar
  26. Sudo S, Kumagai J, Nishi S, Layfield S, Ferraro T, Bathgate RA, et al. H3 relaxin is a specific ligand for LGR7 and activates the receptor by interacting with both the ectodomain and the exoloop 2. J Biol Chem. 2003;278(10):7855–62.PubMedCrossRefGoogle Scholar
  27. Svendsen AM, Zalesko A, Konig J, Vrecl M, Heding A, Kristensen JB, et al. Negative cooperativity in H2 relaxin binding to a dimeric relaxin family peptide receptor 1. Mol Cell Endocrinol. 2008a;296(1–2):10–7.PubMedCrossRefGoogle Scholar
  28. Svendsen AM, Vrecl M, Ellis TM, Heding A, Kristensen JB, Wade JD, et al. Cooperative binding of insulin-like peptide 3 to a dimeric relaxin family peptide receptor 2. Endocrinology. 2008b;149(3):1113–20.PubMedCrossRefGoogle Scholar
  29. van der Westhuizen ET, Halls ML, Samuel CS, Bathgate RA, Unemori EN, Sutton SW, et al. Relaxin family peptide receptors–from orphans to therapeutic targets. Drug Discov Today. 2008;13(15–16):640–51.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Roger J. Summers
    • 1
  • Michelle L. Halls
    • 2
  • Emma T. van der Westhuizen
    • 3
  1. 1.Drug Discovery BiologyMonash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleAustralia
  2. 2.Department of PharmacologyUniversity of CambridgeCambridgeUK
  3. 3.Institut de Recherche en Immunologie et CancérologieUniversité de MontréalMontréalCanada