Skip to main content

Relaxin Family Peptide Receptors (RXFP) 1 and 2

  • Reference work entry
Encyclopedia of Signaling Molecules

Synonyms

GREAT; RXFP1: LGR7; RXFP2: LGR8

Historical Background: Relaxin Family Peptides and Their Receptors

Relaxin was one of the first reproductive hormones to be identified, following the observation that a factor in the serum of pregnant guinea pigs induced relaxation of the birth canal (Hisaw 1926). Until recently, relaxin was considered purely a hormone of pregnancy and little was known of its potential roles in males and nonpregnant females; the purification of relaxin from animal sources led to the determination of its peptide structure, biological actions, and development of reliable bioassays (Schwabe and McDonald 1977; James et al. 1977; John et al. 1981), and this knowledge precipitated the use of recombinant DNA techniques to clone the rat (Hudson et al. 1981) and pig (Haley et al. 1982) relaxin genes, followed soon after by human gene-1 (RLN1) (Hudson et al. 1983) and gene-2 relaxin (RLN2) (Hudson et al. 1984). The identification of additional relaxin peptides (including...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bathgate RA, Ivell R, Sanborn BM, Sherwood OD, Summers RJ. International union of pharmacology LVII: recommendations for the nomenclature of receptors for relaxin family peptides. Pharmacol Rev. 2006;58(1):7–31.

    Article  PubMed  CAS  Google Scholar 

  • Bullesbach EE, Schwabe C. The trap-like relaxin-binding site of LGR7. J Biol Chem. 2005;280:14051–6.

    Article  PubMed  CAS  Google Scholar 

  • Bullesbach EE, Schwabe C. The mode of interaction of the relaxin-like factor (RLF) with the leucine-rich repeat G protein-activated receptor 8. J Biol Chem. 2006;281:26136–43.

    Article  PubMed  CAS  Google Scholar 

  • Du XJ, Bathgate RA, Samuel CS, Dart AM, Summers RJ. Cardiovascular effects of relaxin: from basic science to clinical therapy. Nat Rev Cardiol. 2010;7(1):48–58.

    Article  PubMed  CAS  Google Scholar 

  • Ferlin A, Pepe A, Facciolli A, Gianesello L, Foresta C. Relaxin stimulates osteoclast differentiation and activation. Bone. 2010;46(2):504–13.

    Article  PubMed  CAS  Google Scholar 

  • Haley J, Hudson P, Scanlon D, John M, Cronk M, Shine J, et al. Porcine relaxin: molecular cloning and cDNA structure. DNA. 1982;1(2):155–62.

    Article  PubMed  CAS  Google Scholar 

  • Halls ML, Bond CP, Sudo S, Kumagai J, Ferraro T, Layfield S, et al. Multiple binding sites revealed by interaction of relaxin family peptides with native and chimeric relaxin family peptide receptors 1 and 2 (LGR7 and LGR8). J Pharmacol Exp Ther. 2005;313(2):677–87.

    Article  PubMed  CAS  Google Scholar 

  • Halls ML, van der Westhuizen ET, Bathgate RA, Summers RJ. Relaxin family peptide receptors–former orphans reunite with their parent ligands to activate multiple signalling pathways. Br J Pharmacol. 2007;150(6):677–91.

    Article  PubMed  CAS  Google Scholar 

  • Hisaw FL. Experimental relaxation of the pubic ligament of the guinea pig. Proc Soc Exp Biol Med. 1926;23:661–3.

    Google Scholar 

  • Hopkins EJ, Layfield S, Ferraro T, Bathgate RA, Gooley PR. The NMR solution structure of the relaxin (RXFP1) receptor lipoprotein receptor class A module and identification of key residues in the N-terminal region of the module that mediate receptor activation. J Biol Chem. 2007;282(6):4172–84.

    Article  PubMed  CAS  Google Scholar 

  • Hsu SY, Kudo M, Chen T, Nakabayashi K, Bhalla A, van der Spek PJ, et al. The three subfamilies of leucine-rich repeat-containing G protein-coupled receptors (LGR): identification of LGR6 and LGR7 and the signaling mechanism for LGR7. Mol Endocrinol. 2000;14(8):1257–71.

    Article  PubMed  CAS  Google Scholar 

  • Hsu SY, Nakabayashi K, Nishi S, Kumagai J, Kudo M, Sherwood OD, et al. Activation of orphan receptors by the hormone relaxin. Science. 2002;25(295):637–8.

    Google Scholar 

  • Hudson P, Haley J, Cronk M, Shine J, Niall H. Molecular cloning and characterization of cDNA sequences coding for rat relaxin. Nature. 1981;291(5811):127–31.

    Article  PubMed  CAS  Google Scholar 

  • Hudson P, Haley J, John M, Cronk M, Crawford R, Haralambidis J, et al. Structure of a genomic clone encoding biologically active human relaxin. Nature. 1983;301(5901):628–31.

    Article  PubMed  CAS  Google Scholar 

  • Hudson P, John M, Crawford R, Haralambidis J, Scanlon D, Gorman J, et al. Relaxin gene expression in human ovaries and the predicted structure of a human preprorelaxin by analysis of cDNA clones. EMBO J. 1984;3(10):2333–9.

    PubMed  CAS  Google Scholar 

  • Ivell R, Anand-Ivell R. Biology of insulin-like factor 3 in human reproduction. Hum Reprod Update. 2009;15(4):463–76.

    Article  PubMed  CAS  Google Scholar 

  • James R, Niall H, Kwok S, Bryand-Greenwood G. Primary structure of porcine relaxin: homology with insulin and related growth factors. Nature. 1977;267(5611):544–6.

    Article  PubMed  CAS  Google Scholar 

  • John MJ, Borjesson BW, Walsh JR, Niall HD. Limited sequence homology between porcine and rat relaxins: implications for physiological studies. Endocrinology. 1981;108(2):726–9.

    Article  PubMed  CAS  Google Scholar 

  • Kern A, Agoulnik AI, Bryant-Greenwood GD. The low-density lipoprotein class A module of the relaxin receptor (leucine-rich repeat containing G-protein coupled receptor 7): its role in signaling and trafficking to the cell membrane. Endocrinology. 2007;148(3):1181–94.

    Article  PubMed  CAS  Google Scholar 

  • Klonisch T, Bialek J, Radestock Y, Hoang-Vu C, Hombach-Klonisch S. Relaxin-like ligand-receptor systems are autocrine/paracrine effectors in tumor cells and modulate cancer progression and tissue invasiveness. Adv Exp Med Biol. 2007;612:104–18.

    Article  PubMed  Google Scholar 

  • Kumagai J, Hsu SY, Matsumi H, Roh JS, Fu P, Wade JD, et al. INSL3/Leydig insulin-like peptide activates the LGR8 receptor important in testis descent. J Biol Chem. 2002;277(35):31283–6.

    Article  PubMed  CAS  Google Scholar 

  • Rosengren KJ, Lin F, Bathgate RA, Tregear GW, Daly NL, Wade JD, et al. Solution structure and novel insights into the determinants of the receptor specificity of human relaxin-3. J Biol Chem. 2006;281(9):5845–51.

    Article  PubMed  CAS  Google Scholar 

  • Schwabe C, McDonald JK. Primary structure of the B-chain of porcine relaxin. Biochem Biophys Res Commun. 1977;75(2):503–10.

    Article  PubMed  CAS  Google Scholar 

  • Scott DJ, Wilkinson TN, Zhang S, Ferraro T, Wade JD, Tregear GW, et al. Defining the LGR8 residues involved in binding insulin-like peptide 3. Mol Endocrinol. 2007;21(7):1699–712.

    Article  PubMed  CAS  Google Scholar 

  • Sherwood OD. Relaxin’s physiological roles and other diverse actions. Endocr Rev. 2004;25(2):205–34.

    Article  PubMed  CAS  Google Scholar 

  • Sudo S, Kumagai J, Nishi S, Layfield S, Ferraro T, Bathgate RA, et al. H3 relaxin is a specific ligand for LGR7 and activates the receptor by interacting with both the ectodomain and the exoloop 2. J Biol Chem. 2003;278(10):7855–62.

    Article  PubMed  CAS  Google Scholar 

  • Svendsen AM, Zalesko A, Konig J, Vrecl M, Heding A, Kristensen JB, et al. Negative cooperativity in H2 relaxin binding to a dimeric relaxin family peptide receptor 1. Mol Cell Endocrinol. 2008a;296(1–2):10–7.

    Article  PubMed  CAS  Google Scholar 

  • Svendsen AM, Vrecl M, Ellis TM, Heding A, Kristensen JB, Wade JD, et al. Cooperative binding of insulin-like peptide 3 to a dimeric relaxin family peptide receptor 2. Endocrinology. 2008b;149(3):1113–20.

    Article  PubMed  CAS  Google Scholar 

  • van der Westhuizen ET, Halls ML, Samuel CS, Bathgate RA, Unemori EN, Sutton SW, et al. Relaxin family peptide receptors–from orphans to therapeutic targets. Drug Discov Today. 2008;13(15–16):640–51.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger J. Summers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Cite this entry

Summers, R.J., Halls, M.L., van der Westhuizen, E.T. (2012). Relaxin Family Peptide Receptors (RXFP) 1 and 2. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0461-4_362

Download citation

Publish with us

Policies and ethics