Skip to main content

Pim-1

  • Reference work entry
Encyclopedia of Signaling Molecules

Synonyms

Provirus insertion site of Moloney murine leukemia virus 1 Pim-1

Historical Background

The serine-threonine kinase Pim-1 belongs to the Calmodulin-dependent protein kinase family together with two other highly conserved family members (Pim-2 and Pim-3). Pim-1 is the preferential site of integration for the Moloney murine leukemia virus (Proviral Integration for Moloney Virus) discovered over 25 years ago (Selten et al. 1985). Pim-1 plays pivotal roles in cellular proliferation, differentiation, metabolism, and survival by phosphorylating and interacting with many targets. A literature search reveals the dynamic expression and activity of Pim-1 depends upon cell type and response to stimuli, either pathologic or homeostatic. Specifically, Pim-1 is expressed in various hematopoietic sites including thymus, spleen, bone marrow, and fetal liver, but can also be found in the heart, oral epithelia, prostate, hippocampus, vascular smooth muscle, and many tumorigenic cell types...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bachmann M, Moroy T. The serine/threonine kinase Pim-1. Int J Biochem Cell Biol. 2005;37(4):726–30.

    PubMed  CAS  Google Scholar 

  • Bachmann M, Kosan C, et al. The oncogenic serine/threonine kinase Pim-1 directly phosphorylates and activates the G2/M specific phosphatase Cdc25C. Int J Biochem Cell Biol. 2006;38(3):430–43.

    PubMed  CAS  Google Scholar 

  • Bhattacharya N, Wang Z, et al. Pim-1 associates with protein complexes necessary for mitosis. Chromosoma. 2002;111(2):80–95.

    PubMed  CAS  Google Scholar 

  • Borillo GA, Mason M, et al. Pim-1 kinase protects mitochondrial integrity in cardiomyocytes. Circ Res. 2010;106(7):1265–74.

    PubMed  CAS  Google Scholar 

  • Chen J, Kobayashi M, et al. Hypoxia-mediated up-regulation of Pim-1 contributes to solid tumor formation. Am J Pathol. 2009;175(1):400–11.

    PubMed  CAS  Google Scholar 

  • Cottage CT, Bailey B, et al. Cardiac progenitor cell cycling stimulated by Pim-1 kinase. Circ Res. 2010;106(5):891–901.

    PubMed  CAS  Google Scholar 

  • Fischer KM, Cottage CT, et al. Enhancement of myocardial regeneration through genetic engineering of cardiac progenitor cells expressing Pim-1 kinase. Circulation. 2009;120(21):2077–87.

    PubMed  CAS  Google Scholar 

  • Katare R, Caporali A, et al. Intravenous gene therapy with PIM-1 via a cardiotropic viral vector halts the progression of diabetic cardiomyopathy through promotion of prosurvival signaling. Circ Res. 2011;108(10):1238–51.

    PubMed  CAS  Google Scholar 

  • Krishnan N, Pan H, et al. Prolactin-regulated pim-1 transcription: identification of critical promoter elements and Akt signaling. Endocrine. 2003;20(1–2):123–30.

    PubMed  CAS  Google Scholar 

  • Mochizuki T, Kitanaka C, et al. Physical and functional interactions between Pim-1 kinase and Cdc25A phosphatase. Implications for the Pim-1-mediated activation of the c-Myc signaling pathway. J Biol Chem. 1999;274(26):18659–66.

    PubMed  CAS  Google Scholar 

  • Morishita D, Katayama R, et al. Pim kinases promote cell cycle progression by phosphorylating and down-regulating p27Kip1 at the transcriptional and posttranscriptional levels. Cancer Res. 2008;68(13):5076–85.

    PubMed  CAS  Google Scholar 

  • Muraski JA, Rota M, et al. Pim-1 regulates cardiomyocyte survival downstream of Akt. Nat Med. 2007;13(12):1467–75.

    PubMed  CAS  Google Scholar 

  • Nawijn MC, Alendar A, et al. For better or for worse: the role of Pim oncogenes in tumorigenesis. Nat Rev Cancer. 2011;11(1):23–34.

    PubMed  CAS  Google Scholar 

  • Selten G, Cuypers HT, et al. Proviral activation of the putative oncogene Pim-1 in MuLV induced T-cell lymphomas. EMBO J. 1985;4(7):1793–8.

    PubMed  CAS  Google Scholar 

  • Shay KP, Wang Z, et al. Pim-1 kinase stability is regulated by heat shock proteins and the ubiquitin-proteasome pathway. Mol Cancer Res. 2005;3(3):170–81.

    PubMed  Google Scholar 

  • Willert M, Augstein A, et al. Transcriptional regulation of Pim-1 kinase in vascular smooth muscle cells and its role for proliferation. Basic Res Cardiol. 2010;105(2):267–77.

    PubMed  CAS  Google Scholar 

  • Zhang Y, Wang Z, et al. Pim-1 kinase-dependent phosphorylation of p21Cip1/WAF1 regulates its stability and cellular localization in H1299 cells. Mol Cancer Res. 2007;5(9):909–22.

    PubMed  CAS  Google Scholar 

  • Zhang Y, Wang Z, et al. Pim kinase-dependent inhibition of c-Myc degradation. Oncogene. 2008;27(35):4809–19.

    PubMed  CAS  Google Scholar 

  • Zhao Y, Hamza MS, et al. Kruppel-like factor 5 modulates p53-independent apoptosis through Pim1 survival kinase in cancer cells. Oncogene. 2008;27(1):1–8.

    PubMed  Google Scholar 

  • Zippo A, De Robertis A, et al. PIM1-dependent phosphorylation of histone H3 at serine 10 is required for MYC-dependent transcriptional activation and oncogenic transformation. Nat Cell Biol. 2007;9(8):932–44.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Sussman Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Cite this entry

Cottage, C.T., Sundararaman, B., Din, S., Hariharan, N., Sussman, M.A. (2012). Pim-1. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0461-4_344

Download citation

Publish with us

Policies and ethics