Encyclopedia of Signaling Molecules

2012 Edition
| Editors: Sangdun Choi

Rin (Ras-Like Protein in Neurons)

  • Weikang Cai
  • Jennifer L. Rudolph
  • Douglas A. Andres
Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-0461-4_122


Historical Background

Ras superfamily small GTP (guanosine triphosphate)-binding proteins function as molecular switches, responding to extra- and intracellular stimuli to control the activity of diverse signaling cascades. To date, over 150 different small GTPases have been identified and are classified into six distinct subfamilies: Ras (Rat sarcoma), Rho (Ras homolog gene family), Rab (Ras-related GTP-binding protein), ARF (ADP-ribosylation factor), Ran (Ras-related nuclear protein), and RGK (Rad/Gem/Kir family), based upon both sequence homology and the regulation of common cellular functions (Colicelli 2004). Rin (Ras-like protein in neurons), along with Rit (Ras-like protein in many tissues) and Drosophila Ric (Ras-related protein which interacted with calmodulin), comprise the Rit subfamily of Ras-related small GTPases (Lee et al. 1996). Rin is expressed exclusively within neurons and has been characterized as...

This is a preview of subscription content, log in to check access.



This work was supported by Public Health Service grant NS045103 from the National Institute of Neurological Disorders and Stroke and 2P20 RR020171 from the National Center for Research Resources.


  1. Calissano M, Latchman DS. Functional interaction between the small GTP-binding protein Rin and the N-terminal of Brn-3a transcription factor. Oncogene. 2003;22(35):5408–14.PubMedCrossRefGoogle Scholar
  2. Colicelli J. Human RAS superfamily proteins and related GTPases. Sci STKE. 2004;2004(250):RE13.PubMedCrossRefGoogle Scholar
  3. Harrison SM, Rudolph JL, Spencer ML, Wes PD, Montell C, Andres DA, et al. Activated RIC, a small GTPase, genetically interacts with the Ras pathway and calmodulin during Drosophila development. Dev Dyn. 2005;232(3):817–26.PubMedCrossRefGoogle Scholar
  4. Hartwig C, Veske A, Krejcova S, Rosenberger G, Finckh U. Plexin B3 promotes neurite outgrowth, interacts homophilically, and interacts with Rin. BMC Neurosci. 2005;6:53.PubMedCrossRefGoogle Scholar
  5. Heo WD, Inoue T, Park WS, Kim ML, Park BO, Wandless TJ, et al. PI(3,4,5)P3 and PI(4,5)P2 lipids target proteins with polybasic clusters to the plasma membrane. Science. 2006;314(5804):1458–61.PubMedCrossRefGoogle Scholar
  6. Hoshino M, Nakamura S. The Ras-like small GTP-binding protein Rin is activated by growth factor stimulation. Biochem Biophys Res Commun. 2002;295(3):651–6.PubMedCrossRefGoogle Scholar
  7. Hoshino M, Nakamura S. Small GTPase Rin induces neurite outgrowth through Rac/Cdc42 and calmodulin in PC12 cells. J Cell Biol. 2003;163(5):1067–76.PubMedCrossRefGoogle Scholar
  8. Hoshino M, Yoshimori T, Nakamura S. Small GTPase proteins Rin and Rit Bind to PAR6 GTP-dependently and regulate cell transformation. J Biol Chem. 2005;280(24):22868–74.PubMedCrossRefGoogle Scholar
  9. Lee CH, Della NG, Chew CE, Zack DJ. Rin, a neuron-specific and calmodulin-binding small G-protein, and Rit define a novel subfamily of ras proteins. J Neurosci. 1996;16(21):6784–94.PubMedGoogle Scholar
  10. Oinuma I, Ishikawa Y, Katoh H, Negishi M. The semaphorin 4D receptor Plexin-B1 is a GTPase activating protein for R-Ras. Science. 2004;305(5685):862–5.PubMedCrossRefGoogle Scholar
  11. Qiu RG, Abo A, Steven Martin G. A human homolog of the C. elegans polarity determinant Par-6 links Rac and Cdc42 to PKCzeta signaling and cell transformation. Curr Biol. 2000;10(12):697–707.PubMedCrossRefGoogle Scholar
  12. Rudolph JL, Shi GX, Erdogan E, Fields AP, Andres DA. Rit mutants confirm role of MEK/ERK signaling in neuronal differentiation and reveal novel Par6 interaction. Biochim Biophys Acta. 2007;1773(12):1793–800.PubMedCrossRefGoogle Scholar
  13. Shao H, Kadono-Okuda K, Finlin BS, Andres DA. Biochemical characterization of the Ras-related GTPases Rit and Rin. Arch Biochem Biophys. 1999;371(2):207–19.PubMedCrossRefGoogle Scholar
  14. Shi SH, Jan LY, Jan YN. Hippocampal neuronal polarity specified by spatially localized mPar3/mPar6 and PI 3-kinase activity. Cell. 2003;112(1):63–75.PubMedCrossRefGoogle Scholar
  15. Shi GX, Han J, Andres DA. Rin GTPase couples nerve growth factor signaling to p38 and b-Raf/ERK pathways to promote neuronal differentiation. J Biol Chem. 2005;280(45):37599–609.PubMedCrossRefGoogle Scholar
  16. Shi GX, Jin L, Andres DA. Pituitary adenylate cyclase-activating polypeptide 38-mediated Rin activation requires Src and contributes to the regulation of HSP27 signaling during neuronal differentiation. Mol Cell Biol. 2008;28(16):4940–51.PubMedCrossRefGoogle Scholar
  17. Shin I, Kim S, Song H, Kim HR, Moon A. H-Ras-specific activation of Rac-MKK3/6-p38 pathway: its critical role in invasion and migration of breast epithelial cells. J Biol Chem. 2005;280(15):14675–83.PubMedCrossRefGoogle Scholar
  18. Spencer ML, Shao H, Tucker HM, Andres DA. Nerve growth factor-dependent activation of the small GTPase Rin. J Biol Chem. 2002;277(20):17605–15.PubMedCrossRefGoogle Scholar
  19. Stetler RA, Gao Y, Signore AP, Cao G, Chen J. HSP27: mechanisms of cellular protection against neuronal injury. Curr Mol Med. 2009;9(7):863–72.PubMedCrossRefGoogle Scholar
  20. Vanderhaeghen P, Cheng HJ. Guidance molecules in axon pruning and cell death. Cold Spring Harb Perspect Biol. 2010;2(6):a001859.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Weikang Cai
    • 1
  • Jennifer L. Rudolph
    • 1
  • Douglas A. Andres
    • 1
  1. 1.Department of Molecular and Cellular BiochemistryUniversity of Kentucky College of MedicineLexingtonUSA