Encyclopedia of Signaling Molecules

2012 Edition
| Editors: Sangdun Choi

Ramp

  • Debbie L. Hay
  • Patrick M. Sexton
  • David R. Poyner
Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-0461-4_112

Historical Background

The receptor activity-modifying protein (RAMP) family was first reported in 1998 during attempts to identify the cell surface receptor for a neuropeptide known as calcitonin gene-related peptide (CGRP) (McLatchie et al. 1998). Formerly, a protein known as the calcitonin receptor-like receptor (CLR) was thought to be the receptor for CGRP but no study had convincingly shown that this was the case. McLatchie and colleagues were able to show that CLR needs RAMP1 for a CGRP receptor to be formed. RAMP1 assists CLR in reaching the cell surface. Thus, RAMP1 and CLR together at the cell surface form the receptor for CGRP, which binds and activates this protein complex, leading to downstream signaling events such as an accumulation of intracellular cAMP. In this same study, two other related proteins were found, named RAMP2 and RAMP3. Each of these proteins could also assist CLR in reaching the cell surface but remarkably, CGRP was less effective at activating these...

This is a preview of subscription content, log in to check access.

References

  1. Bomberger JM, Parameswaran N, Hall CS, Aiyar N, Spielman WS. Novel function for receptor activity-modifying proteins (RAMPs) in post-endocytic receptor trafficking. J Biol Chem. 2005;280:9297–307.PubMedCrossRefGoogle Scholar
  2. Bouschet T, Martin S, Henley JM. Receptor-activity-modifying proteins are required for forward trafficking of the calcium-sensing receptor to the plasma membrane. J Cell Sci. 2005;118:4709–20.PubMedCrossRefGoogle Scholar
  3. Christopoulos A, Christopoulos G, Morfis M, Udawela M, Laburthe M, Couvineau A, Kuwasako K, Tilakaratne N, Sexton PM. Novel receptor partners and function of receptor activity-modifying proteins. J Biol Chem. 2003;278:3293–7.PubMedCrossRefGoogle Scholar
  4. Dackor R, Fritz-Six K, Smithies O, Caron K. Receptor activity-modifying proteins 2 and 3 have distinct physiological functions from embryogenesis to old age. J Biol Chem. 2007;282:18094–9.PubMedCrossRefGoogle Scholar
  5. Eftekhari S, Salvatore CA, Calamari A, Kane SA, Tajti J, Edvinsson L. Differential distribution of calcitonin gene-related peptide and calcitonin gene-related peptide receptor components (calcitonin receptor-like receptor and receptor activity-modifying protein 1) in the human trigeminal ganglion. Neuroscience. 2010;169:683–96.Google Scholar
  6. Fritz-Six KL, Dunworth WP, Li M, Caron KM. Adrenomedullin signaling is necessary for murine lymphatic vascular development. J Clin Invest. 2008;118:40–50.PubMedCrossRefGoogle Scholar
  7. Johnson EC, Shafer OT, Trigg JS, Park J, Schooley DA, Dow JA, Taghert PH. A novel diuretic hormone receptor in Drosophila: evidence for conservation of CGRP signaling. J Exp Biol. 2005;208:1239–46.PubMedCrossRefGoogle Scholar
  8. Koth CM, Abdul-Manan N, Lepre CA, Connolly PJ, Yoo S, Mohanty AK, Lippke JA, Zwahlen J, Coll JT, Doran JD, Garcia-Guzman M, Moore JM. Refolding and characterization of a soluble ectodomain complex of the calcitonin gene-related peptide receptor. Biochemistry. 2010;49:1862–72.PubMedCrossRefGoogle Scholar
  9. Kusano S, Kukimoto-Niino M, Akasaka R, Toyama M, Terada T, Shirouzu M, Shindo T, Yokoyama S. Crystal structure of the human receptor activity-modifying protein 1 extracellular domain. Protein Sci. 2008;17:1907–14.PubMedCrossRefGoogle Scholar
  10. McLatchie LM, Fraser NJ, Main MJ, Wise A, Brown J, Thompson N, Solari R, Lee MG, Foord SM. RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature. 1998;393:333–9.PubMedCrossRefGoogle Scholar
  11. Morfis M, Tilakaratne N, Furness SG, Christopoulos G, Werry TD, Christopoulos A, Sexton PM. Receptor activity modifying proteins differentially modulate the G protein-coupling efficiency of amylin receptors. Endocrinology. 2008;149:5423–31.PubMedCrossRefGoogle Scholar
  12. Nag K, Kato A, Nakada T, Hoshijima K, Mistry AC, Takei Y, Hirose S. Molecular and functional characterization of adrenomedullin receptors in pufferfish. Am J Physiol Regul Integr Comp Physiol. 2006;290:R467–78.PubMedCrossRefGoogle Scholar
  13. Poyner DR, Sexton PM, Marshall I, Smith DM, Quirion R, Born W, Muff R, Fischer JA, Foord SM. International Union of Pharmacology. XXXII. The mammalian calcitonin gene-related peptides, adrenomedullin, amylin, and calcitonin receptors. Pharmacol Rev. 2002;54:233–46.PubMedCrossRefGoogle Scholar
  14. Sexton PM, Poyner DR, Simms J, Christopoulos A, Hay DL. Modulating receptor function through RAMPs: can they represent drug targets in themselves? Drug Discov Today. 2009;14:413–9.PubMedCrossRefGoogle Scholar
  15. Tam CW, Husmann K, Clark NC, Clark JE, Lazar Z, Ittner LM, Götz J, Douglas G, Grant AD, Sugden D, Poston L, Poston R, McFadzean I, Marber MS, Fischer JA, Born W, Brain SD. Enhanced vascular responses to adrenomedullin in mice overexpressing receptor-activity-modifying protein 2. Circ Res. 2006;98:262–70.PubMedCrossRefGoogle Scholar
  16. Zhang Z, Winborn CS, Marquez de Prado B, Russo AF. Sensitization of calcitonin gene-related peptide receptors by receptor activity-modifying protein-1 in the trigeminal ganglion. J Neurosci. 2007;27:2693–703.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Debbie L. Hay
    • 1
  • Patrick M. Sexton
    • 2
  • David R. Poyner
    • 3
  1. 1.School of Biological SciencesUniversity of AucklandAucklandNew Zealand
  2. 2.Monash Institute of Pharmaceutical SciencesMonash UniversityMelbourneAustralia
  3. 3.School of Life and Health SciencesAston UniversityBirminghamUK