Encyclopedia of Geobiology

2011 Edition
| Editors: Joachim Reitner, Volker Thiel

Divalent Earth Alkaline Cations in Seawater

  • Anton Eisenhauer
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-9212-1_75


Divalent cations in seawater


The most abundant divalent earth alkaline cations in seawater are Mg2+, Ca2+, and Sr2+ are simply termed the “divalent cations.” These ions and their dynamic change play a major role for the modern oceans. On long geological time scales dynamic changes of divalent cation concentrations in the oceans influenced the evolution of live and the climate evolution in the past.

Divalent cations in modern ocean water


Magnesium is a chemical element with the symbol Mg, the atomic number 12, and an atomic mass of 24.31. Magnesium is the ninth most abundant element in the universe by mass. It constitutes about 2% of the Earth’s crust by mass, and it is the third most abundant element dissolved in seawater and it is the most abundant divalent cation followed by Ca and Sr in seawater (Brown et al., 1992). Mg ions are essential to all living cells, and is the 11th most abundant element by mass in the human body. In seawater (S= 35 psu), Mg...


Calcium Carbonate Divalent Cation Pacific Decadal Oscillation Great Barrier Reef Planktonic Foraminifera 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Beck, J. W., Recy, J., Taylor, F., Edwards, R. L., and Cabioch, G., 1992. Abrupt changes in early Holocene tropical sea surface temperature derived from coral records. Nature, 385, 705–707.CrossRefGoogle Scholar
  2. Bernat, M., Church, T., and Allegre, C. J., 1972. Barium and strontium concentrations in Pacific and Mediterranean sea water profiles by direct isotope dilution mass spectrometry. Earth and Planetary Science Letters, 16(1), 75–80.CrossRefGoogle Scholar
  3. Brown, J., Colling, A., Park, D., Philips, J., Rotghery, D., and Wright, J., 1992. Seawater: its Composition, Properties, and Behaviour. Oxford: Pergamon Press.Google Scholar
  4. DeLaRocha, C. L., and DePaolo, D. J., 2000. Isotopic evidence for variations in the marine calcium cycle over the cenozoic. Science, 289, 1176–1178.CrossRefGoogle Scholar
  5. DeVilliers, S., and Nelson, B. K., 1999. Detection of low-temperature hydrothermal fluxes by seawater Mg and Ca anomalies. Science, 285, 721–723.CrossRefGoogle Scholar
  6. Fietzke, J., and Eisenhauer, A., 2006. Determination of temperature-dependent stable strontium isotope (88Sr/ 86Sr) fractionation via bracketing standard MC-ICP-MS. Geochemistry, Geophysics, Geosystems, 7(8), doi:10.1029/2006GC001243.Google Scholar
  7. Gussone, N., Eisenhauer, A., Heuser, A., Dietzel, M., Bock, B., Böhm, F., Spero, H., Lea, D. W., Bijma, J., and Nägler, T. F., 2003. Model for kinetic effects on calcium isotope fractionation (δ44Ca) in inorganic aragonite and cultured planktonic foraminifera. Geochimica et Cosmochimica Acta, 67(7), 1375–1382.CrossRefGoogle Scholar
  8. Hastings, D. W., Russell, A. D., and Emerson, S. R., 1998. Foraminferal magnesium in G. sacculifer as a paleotemperature proxy in the equatorial Atlantic and Carribean surface oceans. Paleoceanography, 13(2), 161–169.CrossRefGoogle Scholar
  9. Hippler, D., Eisenhauer, A., et al. 2006. “Tropical Atlantic SST history inferred from Ca isotope thermometry over the last 140ka.” Geochem Cosmochem Acta, 70, 90–100, doi:10.1016/j.gca.2005.07.022.CrossRefGoogle Scholar
  10. Holland, H. D., 1984. The Chemical Evolution of the Atmosphere and Oceans. Princeton: Princeton University Press.Google Scholar
  11. Kastner, M., 1999. Oceanic minerals: their origin, nature of their environment, and significance. Proceedings of the National Academy of Sciences of the United States of America, 96, 3380–3387.CrossRefGoogle Scholar
  12. Katz, A., 1973. The interaction of magnesium with calcite during crystal growth at 25–90°C and one atmosphere. Geochimica et Cosmochimica Acta, 37(6), 1563–1578, IN3, 1579–1586.CrossRefGoogle Scholar
  13. Kinsman, D. J. J., and Holland, H. D., 1969. The co-precipitation of cations with CaCO3. The co-precipitation of Sr2 + with aragonite between 16° and 96°C. Geochimica et Cosmochimica Acta, 33, 1–17.CrossRefGoogle Scholar
  14. Kisakürek, B., Eisenhauer, A., et al. 2008. Controls on shell Mg/Ca and Sr/Ca in cultured planktonic foraminiferan, Globigerinoides ruber (white). Earth and Planetary Science Letters, 273(3–4), 260–269.CrossRefGoogle Scholar
  15. Lea, D. W., 2003. Elemental and isotopic proxis of past ocean temperatures. In Holland, H. D., and Turekian K. K. (eds.), Treatise on Geochemistry, Oxford: Elsevier, Vol. 6, pp. 365–390.Google Scholar
  16. Lea, D. W., Mashiotta, T. A., and Spero, H. J., 1999. Controls on magnesium and strontium uptake in planktonic foraminifera determined by live culturing. Geochimica et Cosmochimica Acta, 63(16), 2369–2379.CrossRefGoogle Scholar
  17. Lea, D. W., Pak, D. K., and Spero, H. J., 2000. Climate impact of late quaternary equatorial pacific sea surface temperature variations. Science, 289, 1719–1724.CrossRefGoogle Scholar
  18. Linsley, B. K., Wellington, G. M., and Schrag, D. P., 2000. Decadal sea surface temperature variability in the subtropical South Pacific from 1726 to 1997 A.D. Science, 290, 1145–1148.CrossRefGoogle Scholar
  19. Mantua, J. N., Hare, S. R., Zhang, Y., Wallace, J. M., and Francids, R. C., 1997. A Pacific interdecadal climate oscillation with impacts on salmon production. American Meteorological Society, 78(6), 1069–1079.CrossRefGoogle Scholar
  20. Mashiotta, T. M., Lea, D. W., and Spero, H. J., 1999. Glacial-interglacial changes in Subantarctic sea surface temperature and δ18O-water using foraminiferal Mg. Earth and Planetary Science Letters, 170, 417–432.CrossRefGoogle Scholar
  21. McKenzie, J. A., 1981. Holocene dolomitization of calcium carbonate sediments from the coastal sabkhas of Abu Dhabi, UAE: a stable isotope study. Journal of Geology, 89, 185–198.CrossRefGoogle Scholar
  22. Millero, F. J., 1995. Thermodynamics of the carbon dioxide system in the oceans. Geochimica et Cosmochimica Acta, 59(4), 661–677.CrossRefGoogle Scholar
  23. Mottl, M. J., and Holland, H. D., 1978. Chemical exchange during hydrothermal alteration of basalt by seawater-I. Experimental results for major and minor components of seawater. Geochimica et Cosmochimica Acta, 42(8), 1103–1115.CrossRefGoogle Scholar
  24. Mottl, M. J., and Wheat, C. G., 1993. Hydrothermal circulation through mid-ocean ridge flanks: Fluxes of heat and magnesium. Geochim Cosmochim Acta, 58, 2225–2237.CrossRefGoogle Scholar
  25. Nägler, T., Eisenhauer, A., Müller, A., Hemleben, C., and Kramers, J., 2000. The δ44Ca-isotopes: new powerful tool for reconstruction of past sea surface temperatures. Geochemistry, Geophysics, Geosystems, 1(2000GC000091).Google Scholar
  26. Nürnberg, D., Bijma, J., et al. 1996. Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures. Geochim Cosmochim Acta, 60, 803–814.CrossRefGoogle Scholar
  27. Nürnberg, D., Müller, A., and Schneider, R. R., 2000. Paleo-sea surface temperature calculations in the equatorial east Atlantic from Mg/Ca ratios in planktic foraminifera: a comparison to sea surface temperature estimates from Uk'37, oxygen isotopes, and foraminiferal transfer function. Paleooceanography, 15(1), 124–134.CrossRefGoogle Scholar
  28. Savin, S. M., and Douglas, R. G., 1973. Stable isotope and magnesium geochemistry of recent planktonic foraminfera from South-Pacific. Geological Society of America Bulletin, 84(7), 2327–2342.CrossRefGoogle Scholar
  29. Wilkinson, B. H., and Algeo, T. J., 1989. Sedimentary carbonate record of calcium-magnesium cycling. American Journal of Science, 289, 1158–1194.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Anton Eisenhauer
    • 1
  1. 1.IFM-GEOMARLeibniz-Institut für Meereswissenschaften Christian Albrechts Universität zu KielKielGermany