Encyclopedia of Geobiology

2011 Edition
| Editors: Joachim Reitner, Volker Thiel

Terrestrial Deep Biosphere

  • Christine Heim
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-9212-1_65


Continental deep biosphere; Subterranean biosphere


The terrestrial deep biosphere comprises ecosystems in the marine (e.g., shelf-sediments) and continental subsurface, beneath the rhizosphere or bioturbated zone. The habitable depth is limited by space (rock porosity), the availability of water and in particular the maximum viable temperature depending on the local geothermal gradient (Gold, 1992; Pedersen, 1993, 2000, 2001, 2002; Stevens, 2002).


Microbial life exists in, and seems to be adapted to all kinds of ecological niches on earth. From the early 1930s, increasing numbers of publications report on the occurrence of microorganisms in deep terrestrial settings, such coal mines (Lipman, 1931, 1937; Lieske, 1932) and deep formation waters from oil drilling, as deep as 2,000 m (Ginsburg-Karagitscheva, 1933; Issatchenko, 1940). During the following decades the scientific interest in subsurface microbiology focused on the effects of microorganisms on...


Drilling Fluid Salt Deposit Methanogenic Archaea Deep Subsurface Permafrost Soil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Abramov, O., and Mojzis, S., 2009. Microbial habitability of the Hadean earth during late heavy bombardment. Nature, 459, 419–422.CrossRefGoogle Scholar
  2. Abyzov, S. S., Mitskevich, I. N., Poglazova, M. N., Barkov, N. I., Lipenkov, V. Ya., Bobin, N. E., Koudryashov, B. B., Pashkevich, V. M., and Ivanov, M. V., 2001. Microflora in the basal strata at anatarctic ice core above the vostok lake. Advances in Space Research, 28, 701–706.CrossRefGoogle Scholar
  3. Amend, J. P., and Teske, A., 2005. Expanding frontiers in deep subsurface microbiology. Palaeogeography, Palaeoclimatology, Palaeoecology, 219, 131–155.CrossRefGoogle Scholar
  4. Amy, P. S., 1997. Microbial dormacy and survival in the subsurface. In Amy, P., and Haldeman, D. (eds.), The Microbiology of the Terrestrial Subsurface. Boca Raton: CRC Press, pp. 185–203.Google Scholar
  5. Bailey, N. J. L., Jobson, A. M., and Rogers, M. A., 1973. Bacterial degradation of crude oil: Comparaison of field and experimental data. Chemical Geology, 11, 203–221.CrossRefGoogle Scholar
  6. Belyaev, S. S., Wolkin, R., Kenealy, M., DeNiro, M. J., Epstein, S., and Zeikus, J. G., 1983. Methanogenic bacteria from the bondyushskoe oil field: General characterization and analysis of stable-carbon isotopic fractionation. Applied environmental microbiology, 45, 691–697.Google Scholar
  7. Boivin-Jahns, V., Ruimy, R., Bianchi, A., Daumas, S., and Christen, R., 1996. Bacterial diversity in a deep-subsurface clay environment. Applied and Environmental Microbiology, 62, 3405–3412.Google Scholar
  8. Bonch-Osmolovskaya, E. A., Miroshnichenko, M. L., Lebedinsky, A. V., Chernyh, N. A., Nazina, T. N., Ivoilov, V. S., and Belyaev, S. S., 2003. Radioisotopic, culture-based, and oligonucleotide microchip analyses of thermophilic microbial communities in a continental high-temperature petroleum reservoir. Applied and Environmental Microbiology, 69, 6143–6151.CrossRefGoogle Scholar
  9. Bons, P. D., Montenari, M., Bakker, R. J., and Elburg, M., 2009. Potential evidence of fossilised Neoproterozoic deep life: SEM observations on calcite veins from Oppaminda Creek, Arkoola, South Australia. International Journal of Earth Sciences, 98, 327–343.CrossRefGoogle Scholar
  10. Boone, D. R., Liu, Y., Zhao, Z.-J., Balkwill, D. L., Drake, G. R., Stevens, T. O., and Aldrich, H. C., 1995. Bacillus infernus sp. nov., an Fe(III)- and Mn(IV)-reducing anaerobe from the deep terrestrial subsurface. International Journal of Systematic Bacteriology, 45, 441–448.CrossRefGoogle Scholar
  11. Burke, V., and Wiley, A. J., 1937. Bacteria in coal. Journal of Bacteriology, 34, 475–481.Google Scholar
  12. Chapelle, F. H., 2000. Ground-Water Microbiology and Geochemistry. New York: Wiley, 496 p.Google Scholar
  13. Christofi, N., and Philip, J. C., 1997. European microbiology related to the subsurface disposal of nuclear waste. In Amy, P., and Haldeman, D. (eds.), The Microbiology of the Terrestrial Subsurface. Boca Raton: CRC Press, pp. 267–297.Google Scholar
  14. Cockell, C.S., 2004. Impact-shocked rocks – insights into archean and extraterrestrial habitats (and sites for prebiotic chemistry?). Advances in Space Research, 33, 1231–1235.CrossRefGoogle Scholar
  15. Colwell, F. S., Onstott, T. C., Delwiche, M. E., Chandler, D., Fredrickson, J. K., Yao, Q.-J., McKinley, J. P., Boone, D. R., Griffiths, R., Phelps, T. J., Ringelberg, D., White, D. C., LaFreniere, L., Balkwill, D., Lehman, R. M., Konisky, J., and Long, P. E., 1997. Microorganisms from deep high temperature sand stones: constrains on microbial coloization. FEMS Microbiology Reviews, 20, 425–435.CrossRefGoogle Scholar
  16. Colwell, F., Matsumoto, R., and Reed, D., 2004. A review of the gas hydrates, geology, and biology of the Nankai Trough. Chemical Geology, 205, 391–404.CrossRefGoogle Scholar
  17. Dattagupta, S., Schaperdoth, I., Monanary, A., Mariani, S., Kita, N., Valley, J. W., and Macalady, J. L., 2009. A novel symbiosis between chemoautotrophic bacteria and a freshwater cave amphipod. The ISME Journal, 3, 935–943.CrossRefGoogle Scholar
  18. Dobretsov, N. L., Kolchanov, N. A., and Suslov, V. V., 2006. On the early stages of the evolution of the geosphere and biosphere. Paleontological Journal, 40, 407–424.CrossRefGoogle Scholar
  19. Ekendahl, S., O'Neill, A. H., Thomson, E., and Pedersen, K., 2003. Characterisation of yeasts isolated from deep igneous rock aquifers of the Fennoscandian shield. Microbial Ecology, 46, 416–428.CrossRefGoogle Scholar
  20. Eydal, H. S. C., Jägevall, S., Hermansson, M., and Pedersen, K., 2009. Bacteriophage lytic to Desulfovibrio aespoeensis isolated from deep groundwater. The ISME Journal, 3, 1139–1147.CrossRefGoogle Scholar
  21. Faison, B. D., 2003. Microbial contributions to the search for extraterrestrial life. Advances in Applied Microbiology, 52, 397–432.CrossRefGoogle Scholar
  22. Farrell, M. A., and Turner, H. G., 1932. Bacteria in anthracite coal. Journal of Bacteriology, 23, 155–162.Google Scholar
  23. Fry, N. K., Fredrickson, J. K., Fishbain, S., Wagner, M., and Stahl, D., 1997. Population structure of microbial communities associated with two deep, anaerobic, alkaline aquifers. Applied and Environmental Microbiology, 63, 1498–1504.Google Scholar
  24. Gilichinsky, D. A., Vorobyova, E. A., Erokhina, L. G., Fyordorov-Dayvdov, D. G., and Chaikovykaya, N. R., 1992. Long-term preservation of microbial ecosystems in permafrost. Advances in Space Research, 12, 4255–4263.CrossRefGoogle Scholar
  25. Ginsburg-Karagitscheva, T. L., 1933. Microflora of oil waters and oil-bearing formations and biochemical processes caused by it. Bulletin of the American Association of Petroleum Geologists, 17, 52–65.Google Scholar
  26. Gold, T., 1992. The deep hot biosphere. Proceedings of the National academy of Sciences USA, 89, 6045–6049.CrossRefGoogle Scholar
  27. Griffin, W. T., Phelps, T. J., Colwell, F. S., and Fredrickson, J. K., 1997. Methods for obtaining deep subsurface microbiological samples. In Amy, P., and Haldeman, D. (eds.), The Microbiology of the Terrestrial Subsurface. Boca Raton: CRC Press, pp. 23–44.Google Scholar
  28. Gruber, C., Legat, A., Pfaffenhuemer, M., Radax, C., Weidler, G., Busse, H.-J., and Stan-Lotter, H., 2004. Halobacterium noricense sp. nov., an archaeal isolate from a bore core of an alpine Permian salt deposit, classification of Halobacterium sp. NRC-1 as a strain of H. salinarium and emended description of H. salinarium. Extremophiles, 8, 431–439.CrossRefGoogle Scholar
  29. Haldemann, D. L., 1997. The storage related phenomenon: Implications for handling and analysis of subsurface samples by drilling. In Amy, P., and Haldeman, D. (eds.), The Microbiology of the Terrestrial Subsurface. Boca Raton: CRC Press, pp. 61–74.Google Scholar
  30. Hallbeck, L., and Pedersen, K., 2008. Characterization of microbial processes in deep aquifers of the Fennoscandian Shield. Applied Geochemistry, 23, 1796–1819.CrossRefGoogle Scholar
  31. Hersman, L. E., 1997. Subsurface Microbiology: effects on the transport of radioactive waste in the Vadose Zone. In Amy, P., and Haldeman, D. (eds.), The Microbiology of the Terrestrial Subsurface. Boca Raton: CRC Press, pp. 299–323.Google Scholar
  32. Issatchenko, V., 1940. On the microorganisms of the lower limits of the biosphere. Journal of Bacteriology, 40, 379–381.Google Scholar
  33. Johnson, S. S., Hebsgaard, M. B., Christensen, T. R., Mastepanov, M., Nielsen, R., Munch, K., Brand, T., Gilbert, T. P., Zuber, M. T., Bunce, M., Rønn, R., Gilichinsky, D., Froese, D., and Willerslev, E., 2007. PNAS, 104, 14401–14405.CrossRefGoogle Scholar
  34. Kieft, T. L., and Phelps, T. J., 1997. Life in the slow lane: activities of microorganisms in the subsurface. In Amy, P., and Haldeman, D. (eds.), The Microbiology of the Terrestrial Subsurface. Boca Raton: CRC Press, pp. 137–163.Google Scholar
  35. Kimura, H., Ishibashi, J.-I., Masuda, H., Kato, K., and Hanada, S., 2007. Selective phylogenetic analysis targeting 16S rRNA genes of hyperthermophilic archaea in the deep-subsurface hot biosphere. Applied and Environmental Microbiology, 73, 2110–2117.CrossRefGoogle Scholar
  36. Kotelnikova, S., 2002. Microbial production and oxidation of methane in deep subsurface. Earth-Science Reviews, 58, 367–395.CrossRefGoogle Scholar
  37. Kotelnikova, S., and Pedersen, K., 1998. Distribution and activity of methanogenes and homacetogenes on deep granitic aquifers at Äspö Hard Rock Laboratory, Sweden. FEMS Microbiology Ecology, 26, 121–134.Google Scholar
  38. Kotelnikova, S., Macario, A. J. L., and Pedersen, K., 1998. Methanobacterium subterraneum sp. nov., a new alkaliphilic, eurythermic and halotolerant methanogen isolated from deep granitic groundwater. International Journal of Systematic Bacteriology, 48, 357–367.CrossRefGoogle Scholar
  39. Kovacik, W. P., Takai, K., Mormile, M. R., McKinley, J. P., Brockman, F. J., Fredrickson, J. K., and Holben, W., 2006. Loecluar analysis of deep subsurface Cretaceous rock indicates abundant Fe(III)- and S°-reducing bacteria in a sulfate-rich environment. Environmental Microbiology, 8, 141–155.CrossRefGoogle Scholar
  40. Krumholz, L. R., 2000. Microbial communities in the deep subsurface. Hydrogeology Journal, 8, 4–10.Google Scholar
  41. Kyle, J. E., Eydal, H. S. C., Ferris, F. G., and Pedersen, K., 2008. Viruses in granitic groundwater from 69 to 450 m depth of the Äspö Hard Rock Laboratory, Sweden. The ISME Journal, 2, 571–574.CrossRefGoogle Scholar
  42. Lehman, R. M., Colwell, F. S., Ringelberg, D. B., and White, D. C., 1995. Combined microbial community-level analysis for quality assurance of terrestrial subsurface cores. Journal of Microbiological Methods, 22, 263–281.CrossRefGoogle Scholar
  43. Lieske, R., 1932. Über das Vorkommen von Bakterien in Kohlenflözen. Biochemische Zeitschrift, 250, 339–351.Google Scholar
  44. Lin, L.-H., Wang, P.-L., Rumble, D., Lippmann-Pipke, J., Boice, E., Pratt, L. M., Lollar, B. S., Brodie, E. L., Hazen, T. C., Andersen, G. L., DeSantis, T. Z., Moser, D. P., Kershaw, D., and Onstott, T. C., 2006. Long-term sustainability of a high-energy, low-diversity crustal biome. Science, 314, 479–482.CrossRefGoogle Scholar
  45. Lin, L.-H., Slater, G. F., Lollar, B. S., Lacrampe-Couloume, G., and Onstott, T. C., 2005. The yield and isotopic composition of radiolytic H2, a potential energy source for the deep subsurface biosphere. Geochimica et Cosmochimica Acta, 694, 893–903.CrossRefGoogle Scholar
  46. Lipman, C. B., 1931. Living microorganisms in ancient rocks. Journal of Bacteriology, 22, 183–198.Google Scholar
  47. Lipman, C. B., 1937. Bacteria in coal. Journal of Bacteriology, 34, 483–488.Google Scholar
  48. Lollar, B. S., Lacrampe-Couloume, G., Slater, G. F., Ward, J., Moser, D. P., Gihring, T. M., Lin, L.-H., and Onstott, T. C., 2006. Unravelling abiogenic and biogenic sources of methane in the earth’s deep subsurface. Chemical Geology, 226, 328–339.CrossRefGoogle Scholar
  49. Mauclaire, L., McKenzie, J. A., Schwyn, B., and Bossart, P., 2007. Detection and cultivation of indigenous microorganisms in Mesozoic claystone core sample from the Opalinus Clay Formation (Mont Terri Rock Laboratory). Physics and Chemistry of the Earth, 32, 232–240.CrossRefGoogle Scholar
  50. McGenity, T. J., Gemmell, R. T., Grant, W. D., and Stan-Lotter, H., 2000. Origins of halophilic microorganisms in ancient salt deposits. Environmental Microbiology, 2(3), 243–250.CrossRefGoogle Scholar
  51. Miteva, V. I., and Brenchley, J. E., 2005. Detection and isolation of ultra small microorganisms from a 120,000 year-old Greenland glacier ice core. Applied and Environmental Microbiology, 71, 7806–7818.CrossRefGoogle Scholar
  52. Miteva, V. I., Sheridan, P. P., and Brenchley, J. E., 2004. Phylogenetic and physiological diversity of microorganism from a deep Greenland glacier ice core. Applied and Environmental Microbiology, 70, 202–213.CrossRefGoogle Scholar
  53. Mormile, M. R., Biesen, M. A., Gutierrez, M. C., Ventosa, A., Pavlovich, J. B., Onstott, T. C., and Fredrickson, J. K., 2003. Isolation of Halobacterium salinarium retrieved directly from halite brine inclusions. Environmental Microbiology, 5(11), 1094–1102.CrossRefGoogle Scholar
  54. Moser, H., Wolf, M., Fritz, P., Fontes, J.-Ch., Florkowski, T., and Payne, B. R., 1988. Deuterium, oxygen-18, and tritium in Stripa groundwater. Geochimica et Cosmochimica Acta, 53, 1757–1763.CrossRefGoogle Scholar
  55. Pedersen, K., 1997. Microbial life in deep granitic rock. FEMS Microbiology Reviews, 20, 399–414.CrossRefGoogle Scholar
  56. Pedersen, K., 1993. The deep subterranean biosphere. Earth-Science Reviews, 34, 243–260.CrossRefGoogle Scholar
  57. Pedersen, K., 2000. Exploration of deep intraterrestrial microbial life: current perspectives. FEMS, Microbiology Letters, 185, 9–16.CrossRefGoogle Scholar
  58. Pedersen, K., 2001. Diversity and activity of microorganisms in deep igneous rock aquifers of the Fennoscandian Shield. In Fredrickson, J. K., and Fletcher, M. (eds.), Subsurface Microbiology and Biogeochemistry. New York: Wiley, pp. 97–139.Google Scholar
  59. Pedersen, K., 2002. Microbial processes in the disposal of high level radioactive waste 500 m underground in Fennoscandian shield rocks. In Keith-Roach, M. J., and Livens, F. R. (eds.), Interactions of Microorganisms with Radionuclides. Amsterdam: Elsevier, pp. 279–311.CrossRefGoogle Scholar
  60. Pedersen, K., Arlinger, J., Hallbeck, A., Hallbeck, L., Eriksson, S., and Johansson, J., 2008. Numbers, biomass and cultivable diversity of microbial populations relate to depth and borehole-specific conditions in groundwater from depths of 4 to 450 m in Olkiluoto, Finland. The ISME Journal, 2, 760–775.CrossRefGoogle Scholar
  61. Phelps, T. J., Fliermans, C. B., Garland, T. R., Pfiffner, S. M., and White, D. C., 1989. Methods for recovery of deep terrestrial subsurface sediments for microbiological studies. Journal of Microbiological Methods, 9, 267–279.CrossRefGoogle Scholar
  62. Poglazova, M. N., Mitskevich, I. N., Abyzov, S. S., and Ivanov, M. V., 2001. Microbiological characterization of the accreted ice of subglacial Lake Vostok, Antarctica. Microbiology, 70, 723–730.CrossRefGoogle Scholar
  63. Ponder, M. A., Gilour, S. J., Bergholz, P. W., Mindock, C. A., Hollongsworth, R., Thomashow, M. F., and Tiedje, J. M., 2005. Characterization of potential stress responses in ancient Siberian permafrost psychroactive bacteria. FEMS Microbiology Ecology, 53, 103–115.CrossRefGoogle Scholar
  64. Reitner, J., Schumann, G. A., and Pedersen, K., 2005. Fungi in subterranean environments. In Gadd, G. J. (ed.), Fungi in Biogenchemical Cycles. Cambridge: Cambridge University Press, pp. 788–1002.Google Scholar
  65. Rivkina, E. M., Friedmann, E. I., McKay, C. P., and Gilichinsky, D. A., 2000. Metabolic activity of permafrost bacteria below the freezing point. Applied and Environmental Microbiology, 66(8), 3230–3233.CrossRefGoogle Scholar
  66. Rivkina, E., Laurinavichius, K., McGrath, J., Tiedje, J., Shcherbakova, V., and Gilichinsky, D., 2004. Microbial life in permafrost. Advances in Space Research, 33, 1215–1221.CrossRefGoogle Scholar
  67. Russel, C. E., 1997. The collection of subsurface samples by mining. In Amy, P., and Haldeman, D. (eds.), The Microbiology of the Terrestrial Subsurface. Boca Raton: CRC Press, pp. 45–60.Google Scholar
  68. Sahl, J. W., Schmidt, R., Swanner, E. D., Mandernack, K. W., Templeton, A. S., Kieft, T. L., Smith, R. L., Sandford, W. E., Callaghan, R. L., Mitton, J. B., and Spear, J. R., 2008. Subsurface microbial diversity in deep-granitic fracture water in Colorado. Applied and Environmental Microbiology, 74, 143–152.CrossRefGoogle Scholar
  69. Sass, H., and Cypionka, H., 2004. Isolation of sulfate-reducing bacteria from the terrestrial deep subsurface and description of Desulfovibrio cavernae sp. nov. Sytematic and Applied Microbiology, 27, 541–548.CrossRefGoogle Scholar
  70. Seiler, K.-P., and Lindner, W., 1995. Near-surface and deep groundwaters. Journal of Hydrology, 165, 33–44.CrossRefGoogle Scholar
  71. Shimizu, S., Akiyama, M., Naganuma, T., Fujioka, M., Nako, M., and Ishijima, Y., 2007. Molecular characterization of microbial communities in deep coal seam groundwater of northern Japan. Geobiology, 5, 423–433.CrossRefGoogle Scholar
  72. Simpkins, W. W., and Bradbury, K. R., 1992. Groundwater flow, velocity, and age in a thick, fine-grained till unit in southeastern Wisconsin. Journal of Hydrogeology, 132, 283–319.CrossRefGoogle Scholar
  73. Stevens, T. O., 2002. The deep subsurface biosphere. In Staley, J. T., and Reysenbach, A.-L. (eds.), Biodiversity of Microbial Life. Foundation of the Earth's Biosphere. New York: Wiley, 552 p.Google Scholar
  74. Stevens, T. O., 1997a. Subsurface microbiology and the evolution of the biosphere. In Amy, P., and Haldeman, D., (eds.), The Microbiology of the Terrestrial Subsurface. Boca Raton: CRC Press, pp. 203–221.Google Scholar
  75. Stevens, T. O., 1997b. Lithoautotrophy in the subsurface. FEMS Microbiology Reviews, 20, 327–337.CrossRefGoogle Scholar
  76. Suzina, N. E., Mulyukin, A. L., Kozlova, A. N., Shorokova, A. P., Dmitriev, V. V., Barinova, E. S., Mokhova, O. N., El'-Registan, G. I., and Duda, V. I., 2004. Ultrastructure of resting cells of some non-spore-forming bacteria. Microbiology, 73, 516–529.CrossRefGoogle Scholar
  77. Szewzyk, U., Szewzyk, R., and Stenström, T.-A., 1994. Thermophilic, anaerobic bacteria isolated from a deep borehole in granite, Sweden. Proceedings of the National Academy of Sciences, USA, 91, 1810–1813.CrossRefGoogle Scholar
  78. Ventura, G. T., Kenig, F., Reddy, C. M., Schieber, J., Frysinger, G. S., Nelson, R. K., Dinel, E., Gaines, R. B., and Schaeffer, P., 2007. Molecular evidence of late Archaean archaea and the presence of a subsurface hydrothermal biosphere. PNAS, 104, 14260–14625.CrossRefGoogle Scholar
  79. Vorobyova, E., Soina, V., Gorlenko, M., Minkovskaya, N., Zalinova, N., Mamukelashvih, A., Gilichinsky, D., Rivkma, E., and Vishnivetskaya, T., 1997. The deep cold biosphere: facts and hypothesis. FEMS Microbiology Reviews, 20, 277–290.CrossRefGoogle Scholar
  80. Vreeland, R. H., Piselli, A. F., McDonnough, S., and Meyers, S. S., 1998. Distribution and diversity of halophilic bacteria in a subsurface salt formation. Extremophiles, 2, 321–331.CrossRefGoogle Scholar
  81. Wanger, G., Onstott, T. C., and Southam, G., 2008. Stars of the terrestrial deep subsurface: a novel ‘star-shaped’ bacterial morphotype from a South African platinum mine. Geobiology, 6, 325–330.CrossRefGoogle Scholar
  82. Zavarzina, D., Sokolova, T. G., Tourova, T. P., Chernyh, N. A., Kostrikina, N. A., and Bonch-Osmolovskaya, E. A., 2007. Thermincola ferriacetica sp. Nov., a new anaerobic, thermophilic facultatively chemilithoautotrophic bacterium capable of dissimilatory Fe(III) reduction. Extremophiles, 11, 1–7.CrossRefGoogle Scholar
  83. Zhang, G., Dong, H., Jiang, H., Xu, Z., and Eberl, D. D., 2006. Unique microbial community in drilling fluids from Chinese Continental Scientific Drilling. Geomicrobiology Journal, 23, 499–514.CrossRefGoogle Scholar
  84. Zobell, C. E., 1945. The role of bacteria in the formation and transdormation of petroleum hydrocarbons. Science, 102, 364–369.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Christine Heim
    • 1
  1. 1.Geobiology Group Geoscience CentreUniversity of GöttingenGöttingenGermany