Skip to main content

Carbonate Environments

  • Reference work entry

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

Carbonate environments occur both in the terrestrial and marine realms as well as in transitional zones between the land and the sea. The variety of environments spans from high-elevation continental lakes to the deep sea, from the equator to latitudes of about 60°, and they include dry and wet climate realms. The majority of carbonates are produced in the sea, currently in more or less similar proportions in neritic and pelagic settings. Carbonate production is to a large part a consequence of biological activity, either directly as in shell and skeleton formation or indirectly as a result of metabolic reactions, which trigger precipitation. The highest rates of carbonate production per unit time and space are probably reached in tropical coral reefs where several kilograms of calcium carbonate form on 1 m2 during 1 year’s time.

Introduction

Modern carbonate sediments are largely a product of biologic activity, either enzymatically controlled like in calcium carbonate (CaCO

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  • Abegg, F. E., Harris, P. M., and Loope, D. B. (eds.), 2001. Modern and ancient carbonate eolianites. Society for Sedimentary Geology, SEPM special publications, 71, 207.

    Google Scholar 

  • Aigner, T., 1982. Calcareous tempestites: storm-dominated stratification, upper muschelkalk limestones (Middle Triassic, SW Germany). In Einsele, G., and Seilacher, A. (eds.), Cyclic and Event Stratification. Berlin: Springer, pp. 180–198.

    Chapter  Google Scholar 

  • Anadon, P., Cabrera, L., and Kelts, K. (eds.), 1991. Lacustrine facies analysis. International Association Sedimentologists, special publication, 13, 318 p.

    Google Scholar 

  • Bathurst, R. G. C., 1971. Carbonate sediments and their diagenesis. Developments in Sedimentology, 12, 658.

    Google Scholar 

  • Beauchamp, B., and von Bitter, P. (eds.), 1992. Chemosynthesis: geological processes and products. Palaios, 7(4), 337–484.

    Google Scholar 

  • Bosence, D. W. J., 1995. Anatomy of a recent biodetrital mud-mound, Florida Bay, USA. In Monty, C. L. V., Bosence, D. W. J., Bridges, P. H., and Pratt, B. R. (eds.), Carbonate Mud-mounds: Their Origin and Evolution. International Association Sedimentologists. Special publication, 23, pp. 475–493.

    Google Scholar 

  • Burchette, T. P., and Wright, V. P., 1992. Carbonate ramp depositional systems. Sedimentary Geology, 79, 3–57.

    Article  Google Scholar 

  • Campbell, K. A., and Bottjer, D. J., 1995. Brachiopods and chemosymbiotic bivalves in phanerozoic hydrothermal vent and cold seep environments. Geology, 23, 321–324.

    Article  Google Scholar 

  • Chafetz, H. S., and Folk, R. L., 1984. Travertines: depositional morphology and the bacterially constructed constituents. Journal of Sedimentary Petrology, 54, 289–316.

    Google Scholar 

  • Crevello, P. D., and Harris, P. M., 1985. Deep water carbonates: build-ups, turbidites, debris flows and chalks. Society of Sedimentary Geology (SEPM) Core Workshop, 6, 527 p.

    Google Scholar 

  • Daly, R. A., 1910. The glacial-control theory of coral Reefs. American Journal of Science, 30, 297–308.

    Article  Google Scholar 

  • Darwin, C. R., 1842. The Structure and Distribution of Coral Reefs. London: Smith Elder,  214 p.

    Google Scholar 

  • Dill, R. F., Shinn, E. A., Jones, A. T., Kelly, K., and Steinen, R. P., 1986. Giant subtidal stromatolites forming in normal marine seawater. Nature, 324, 55–58.

    Article  Google Scholar 

  • Droxler, A. W., and Schlager, W., 1985. Glacial versus interglacial sedimentation rates and turbidite frequency in the Bahamas. Geology, 13, 799–802.

    Article  Google Scholar 

  • Enos, P., and Moore, C. H., 1983. Fore-reef slope. In Scholle, P. A., Bebout, D. G., and Moore, C. H. (eds.), Carbonate Depositional Environments. American Association Petroleum Geologists Memoir, Vol. 33, pp. 507–538.

    Google Scholar 

  • Fagerstrom, J. A., 1987. The Evolution of Reef Communities. New York: Wiley, 600 p.

    Google Scholar 

  • Flügel, E., 2004. Microfacies of Carbonate Rocks. Berlin: Springer, 976 p.

    Google Scholar 

  • Ford, T. D., and Pedley, H. M., 1996. A review of tufa and travertine deposits of the world. Earth Science Reviews, 41, 117–175.

    Article  Google Scholar 

  • Freiwald, A., and Roberts, J. M. (eds.), 2005. Cold-water Corals and Ecosystems. Berlin: Springer, 1243 p.

    Google Scholar 

  • Ginsburg, R. N., 1956. Environmental relationships of grain size and constituent particles in some South Florida carbonate sediments. Bulletin American Association Petroleum Geologists Bulletin, 40, 2384–2427.

    Google Scholar 

  • Ginsburg, R. N. (eds.), 1975. Tidal Deposits: A Casebook of  Recent Examples and Fossil Counterparts. New York: Springer, 428 p.

    Google Scholar 

  • Ginsburg, R. N. (ed.), 2001. Subsurface geology of a prograding carbonate platform margin, great Bahama bank: results of the Bahamas drilling project. Society for Sedimentary Geology, SEPM special publications, 70, 271 p.

    Google Scholar 

  • Gischler, E., 2007. Beachrock and intertidal precipitates. In Nash, D. J., and McLaren, S. J. (eds.), Geochemical Sediments and Landscapes. Oxford: Blackwell, pp. 365–390.

    Chapter  Google Scholar 

  • Gischler, E., 2010. Sedimentary facies of Bora Bora, Darwin's type barrier reef (Society Islands, south Pacific): the “ oolite problem” reconsidered. Journal of Sedimentary Research, under review.

    Google Scholar 

  • Gischler, E., and Zingeler, D., 2002. The origin of carbonate mud in isolated carbonate platforms of Belize, Central America. International Journal of Earth Sciences, 91, 1054–1070.

    Article  Google Scholar 

  • Grammer, G. M., Ginsburg, R. N., Swart, P. K., McNeill, D. F., Jull, A. J. T., and Prezbindowski, D. R., 1993. Rapid growth of syndepositional marine aragonite cements in steep marginal slope deposits, Bahamas and Belize. Journal of Sedimentary Petrology, 63, 983–989.

    Google Scholar 

  • Hakanson, L., and Jansson, M., 1983. Principles of Lake Sedimentation. Berlin: Springer, 316 p.

    Book  Google Scholar 

  • Harris, P. M., 1979. Facies anatomy and diagenesis of a Bahamian ooid shoal: Sedimenta. Miami: University of Miami, Vol. 7, 163 p.

    Google Scholar 

  • Hoskins, C. W., 1964. Molluscan biofacies in calcareous sediments, Gulf of Batabano, Cuba. American Association Petroleum Geologists Bulletin, 48, 1680–1704.

    Google Scholar 

  • Hsü, K. J., and Jenkyns, H. C. (eds.), 1974. Pelagic sediments: on land and under the sea. International Association Sedimentologists, special publication, 1, 447 p.

    Google Scholar 

  • Inden, R. F., and Moore, C. H., 1983. Beach environment. In Scholle, P. A., Bebout, D. G., and Moore, C. H. (eds.), Carbonate Depositional Environments. American Association Petroleum Geologists Memoir, Vol. 33, pp. 211–265.

    Google Scholar 

  • International Consortium of Great Barrier Reef Drilling, 2001. New constraints on the origin of the Australian Great Barrier Reef: results from an international project of deep coring. Geology, 29, 483–486.

    Article  Google Scholar 

  • James, N. P., and Choquette, P. W. (eds.), 1988. Paleokarst. New York: Springer, 416 p.

    Google Scholar 

  • James, N. P., and Clarke, J. A. D. (eds.), 1997. Cool-water carbonates. Society for Sedimentary Geology, SEPM special publications, 56, 440 p.

    Google Scholar 

  • James, N. P., and Ginsburg, R. N., 1979. The seaward margin of Belize barrier and atoll reefs. International Association Sedimentologists, special publication, 3, 191 p.

    Google Scholar 

  • Keim, L., and Schlager, W., 2001. Quantitative compositional analysis of a Triassic carbonate platform (Southern Alps, Italy). Sedimentary Geology, 139, 261–283.

    Article  Google Scholar 

  • Kempe, S., and Degens, E. T., 1985. An early soda ocean? Chemical Geology, 53, 95–108.

    Article  Google Scholar 

  • Kendall, C. G. S. G., and Skipwith, P. A. E., 1969. Geomorphology of a recent shallow-water carbonate province: Khor al Bazam, Trucial Coast, southwest Persian Gulf. Geological Society of America Bulletin, 80, 865–891.

    Article  Google Scholar 

  • Kiessling, W., Flügel, E., and Golonka, J. (eds.), 2002. Phanerozoic reef patterns. Society for Sedimentary Geology, SEPM special publications, 72, 775 p.

    Google Scholar 

  • Knoll, A. H., Fairchild, I. J., and Swett, K., 1993. Calcified microbes in Neoproterozoic carbonates: implications for our understanding of the Proterozoic/Cambrian transition. Palaios, 8, 512–525.

    Article  Google Scholar 

  • Krause, F. F., Scotese, C. R., Nieto, C., Sayhegh, S. G., Hopkins, J. C., and Meyer, R. O., 2004. Paleozoic stromatactis and zebra carbonate mud-mounds: global abundance and paleogeographic distribution. Geology, 32, 181–184.

    Article  Google Scholar 

  • Lees, A., and Buller, A. T., 1972. Modern temperate water and warm water shelf carbonate sediments contrasted. Marine Geology, 13, 1767–1773.

    Article  Google Scholar 

  • Little, C. T. S., Herrington, R. J., Maslennikov, V. V., Morris, N. J., and Zaykov, V. V., 1997. Silurian hydrothermal-vent community from the southern Urals, Russia. Nature, 385, 146–148.

    Article  Google Scholar 

  • Logan, B. W., Read, J. F., Hagan, G. M., Hoffman, P., Brown, R. G., Woods, P. J., and Gebelein, C. D., 1974. Evolution and diagenesis of quaternary carbonate sequences, Shark Bay, Western Australia. American Association Petroleum Geologists Memoir, 22, 358.

    Google Scholar 

  • Matter, A., and Tucker, M. E. (eds.), 1978. Modern and ancient lake sediments. International Association Sedimentologists, special publication, 2, 290 p.

    Google Scholar 

  • Maxwell, W. G. H., 1968. Atlas of the Great Barrier Reef. Amsterdam: Elsevier, 258 p.

    Google Scholar 

  • Meischner, D., 1964. Allodapische Kalke, Turbidite in Riff-nahen Sedimentations becken. In Bouma, A., and Brower, A. (eds.), Turbidites, Developments in Sedimentology, Vol. 3, pp. 156–191.

    Chapter  Google Scholar 

  • Milliman, J. D., 1974. Marine Carbonates. Berlin: Springer, 375 p.

    Google Scholar 

  • Milliman, J. D., and Droxler, A. W., 1996. Neritic and pelagic carbonate sedimentation in the marine environment: ignorance is not bliss. Geologische Rundschau, 85, 496–504.

    Article  Google Scholar 

  • Montaggioni, L. F., and Camoin, G. F., 1993. Stromatolites associated with coralgal communities in Holocene high-energy reefs. Geology, 21, 149–152.

    Article  Google Scholar 

  • Monty, C. L. V., Bosence, D. W. J., Bridges, P. H., and Pratt, B. R. (eds.), 1995. Carbonate mud-mounds: their origin and evolution. International Association Sedimentologists, special publication, 23, 537 p.

    Google Scholar 

  • Mounji, D., Bourque, P. A., and Savard, M. M., 1998. Hydrothermal origin of Devonian conical mounds (kess-kess) of Hamar Lakhdad Ridge, Anti-Atlas, Morocco. Geology, 26, 1123–1126.

    Article  Google Scholar 

  • Multer, H. G., Gischler, E., Lundberg, J., Simmons, K., and Shinn, E. A., 2002. The key largo limestone revisited: pleistocene shelf edge facies, Florida keys, USA. Facies, 46, 229–272.

    Article  Google Scholar 

  • Neumann, A. C., Kofoed, J. W., and Keller, G., 1977. Lithoherms in the straits of Florida. Geology, 5, 4–10.

    Article  Google Scholar 

  • Purdy, E. G., 1963. Recent calcium carbonate facies of the Great Bahama Bank. 1. Petrography and reaction groups; 2. sedimentary facies. Journal of Geology, 71, 334–355, 472–497.

    Article  Google Scholar 

  • Purdy, E. G., 1968. Carbonate diagenesis: an environmental survey. Geologica Romana, 7, 183–228.

    Google Scholar 

  • Purdy, E. G., 1974. Reef configurations: cause and effect. In Laporte, L. F. (ed.), Reefs in Time and Space, Society of Sedimentary Geology, SEPM special publication, 18, pp. 9–76.

    Google Scholar 

  • Purdy, E. G., and Gischler, E., 2003. The Belize margin revisited: 1. Holocene marine facies. International Journal of Earth Sciences, 92, 532–551.

    Article  Google Scholar 

  • Purdy, E. G., Gischler, E., and Lomando, A. J., 2003. The Belize margin revisited: 2. Origin of Holocene antecedent topography. International Journal of Earth Sciences, 92, 552–572.

    Article  Google Scholar 

  • Rankey, E.C., and Reeder, S.L., 2009. Holocene ooids of Aitutaki Atoll, Cook Islands, South Pacific: Geology, 37, 971–974.

    Google Scholar 

  • Read, J. F. 1985. Carbonate platform models. American Association Petroleum Geologists Bulletin, 69, 1–21.

    Google Scholar 

  • Reid, R. P., and Macintyre, I. G., 1998. Carbonate recrystallization in shallow marine environments: a widespread diagenetic process forming micritized grains. Journal of Sedimentary Research, 68, 928–946.

    Article  Google Scholar 

  • Reitner, J., 1993. Modern cryptic microbialite/metazoan facies from Lizard Island (Great Barrier Reef, Australia): formation and concepts. Facies, 29, 3–29.

    Article  Google Scholar 

  • Roberts, J. M., Wheeler, A. J., and Freiwald, A., 2006. Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science, 312, 543–547.

    Article  Google Scholar 

  • Sandberg, P. A., 1983. An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy. Nature, 305, 19–22.

    Article  Google Scholar 

  • Schlager, W., 2005. Carbonate sedimentology and sequence stratigraphy. Concepts in Sedimentology and Paleontology. Society for Sedimentary Geology (SEPM), 8, 200.

    Google Scholar 

  • Schneidermann, N., and Harris, P. M. (eds.), 1985. Carbonate cements. Society for Sedimentary Geology, SEPM special publications, 36, 379.

    Google Scholar 

  • Scholle, P. A., Bebout, D. G., and Moore, C. H. (eds.), 1983. Carbonate depositional environments. American Association Petroleum Geologists Memoir, 33, 708.

    Google Scholar 

  • Scoffin, T. P., 1987. An Introduction to Carbonate Sediments and Rocks. Blackie: Glasgow, p. 274.

    Google Scholar 

  • Scoffin, T. P., 1992. Taphonomy of coral reefs: a review. Coral Reefs. Berlin, Heidelberg: Springer, Vol. 11, pp. 57–77.

    Google Scholar 

  • Shinn, E. A., Lloyd, R. M., and Ginsburg, R. N., 1969. Anatomy of a modern carbonate tidal flat, Andros Island, Bahamas. Journal of Sedimentary Petrology, 39, 1202–1228.

    Google Scholar 

  • Shinn, E. A., Hudson, J. H., Robbin, D. M., and Lidz, B., 1981. Spurs and grooves revisited: construction versus erosion, Looe Key Reef, Florida. In Proceedings 4th International Coral Reef Symposium, Vol. 1, pp. 475–483.

    Google Scholar 

  • Stanley, G. D. Jr. (ed.), 2001. The history and sedimentology of ancient reef systems. Topics in Geobiology, 17, 458.

    Google Scholar 

  • Stanley, S. M., and Hardie, L. A., 1998. Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeography Palaeoclimatology Palaeoecology, 144, 3–19.

    Article  Google Scholar 

  • Stockman, K. W., Ginsburg, R. N., and Shinn, E. A., 1967. The production of lime mud by algae in South Florida. Journal of Sedimentary Petrology, 37, 633–648.

    Google Scholar 

  • Tayama, R., 1952. Coral Reefs in the South Seas. Tokyo: Bulletin Hydrographical Office Maritime Safety Agency, Vol. 11, 292 p. (3 volumes).

    Google Scholar 

  • Teichert, C., 1958. Cold- and deep-water coral banks. American Association Petroleum Geologists Bulletin, 42, 1064–1082.

    Google Scholar 

  • Traverse, A., and Ginsburg, R. N., 1966. Palynology of the surface sediments of Great Bahama Bank, as related to water movement and sedimentation. Marine Geology, 4: 417–459.

    Article  Google Scholar 

  • Tucker, M. E., and Wright, V. P., 1990. Carbonate Sedimentology. Oxford: Blackwell, 482 p.

    Book  Google Scholar 

  • Wendt, J., and Aigner, T., 1985. Facies patterns and depositional environments of Paleozoic cephalopod limestones. Sedimentary Geology, 44, 263–400.

    Article  Google Scholar 

  • Wilson, J. L., 1975. Carbonate Facies in Geologic History. New York: Springer, 471 p.

    Book  Google Scholar 

  • Wood, R., 1999. Reef Evolution. Oxford: Oxford University Press, 414 p.

    Google Scholar 

  • Wright, V. P., and Burchette, T. P. (eds.), 1998. Carbonate ramps. Geological Society, special publication, 149, 465 p.

    Google Scholar 

  • Wright, V. P., and Tucker, M. E. (eds.), 1991. Calcretes. International Association Sedimentologists Reprint Series, 2, 352 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Gischler, E. (2011). Carbonate Environments. In: Reitner, J., Thiel, V. (eds) Encyclopedia of Geobiology. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9212-1_49

Download citation

Publish with us

Policies and ethics