Skip to main content

Calcite Precipitation, Microbially Induced

  • Reference work entry

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

Microbially induced calcite precipitation describes the formation of calcium carbonate minerals from a solution due to the presence of microbial cells, biosynthetic products, or metabolic activity.

Calcium carbonate precipitation

The most basic requirement for the precipitation of calcium carbonate (CaCO3) minerals, calcite, and aragonite is that the product of the concentrations of calcium [Ca2+] and carbonate ions [CO3 2−] exceeds the solubility product of calcite (Equation 1) and aragonite, respectively.

$$[{\rm Ca}^{2 +} ][{{\rm CO}_3}^{2 -} ] > 10^{-8.35}$$
(1)

The solubility of carbonate minerals depends on the temperature and pressure, decreasing with increasing temperatures and increasing with the increasing pressure. When a solution is in equilibrium with carbon dioxide, [CO3 2−] is determined by pH. In solutions that are undersaturated or not highly saturated, such as modern seawater, the biological activity can strongly control the precipitation of CaCO3....

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  • Aloisi, G., Gloter, A., Kruger, M., Wallmann, K., Guyot, F., and Zuddas, P., 2006. Nucleation of calcium carbonate on bacterial nanoglobules. Geology, 34, 1017–1020.

    Article  Google Scholar 

  • Arp, G., Reimer, A., and Reitner, J., 1999a. Calcification in cyanobacterial biofilms of alkaline salt lakes. European Journal of Phycology, 34.

    Google Scholar 

  • Arp, G., Thiel, V., Reimer, A., Michaelis, W., and Reitner, J., 1999b. Biofilm exopolymers control microbialite formation at thermal springs discharging into the alkaline Pyramid Lake, Nevada, USA. Sedimentary Geology, 126, 159–176.

    Article  Google Scholar 

  • Arp, G., Reimer, A., and Reitner, J., 2001. Photosynthesis-induced biofilm calcification and calcium concentrations in Phanerozoic oceans. Science, 292, 1701–1704.

    Article  Google Scholar 

  • Arp, G., Reimer, A., and Reitner, J., 2003. Microbialite formation in seawater of increased alkalinity, Satonda Crater Lake, Indonesia. Journal of Sedimentary Research, 73, 105–127.

    Article  Google Scholar 

  • Batchelor, M. T., Burne, R. V., Henry, B. I., and Jackson, M. J., 2004. A case for biotic morphogenesis of coniform stromatolites. Physica a-Statistical Mechanics and Its Applications, 337, 319–326.

    Article  Google Scholar 

  • Benzerara, K., Menguy, N., Lopez-Garcia, P., Yoon, T.-H., Kazmierczak, J., Tyliszczak, T., Guyot, F., and Brown, G. E. Jr., 2006. Nanoscale detection of organic signatures in carbonate microbialites. Proceedings of the National Academy of Sciences, 103, 9440–9445.

    Article  Google Scholar 

  • Beveridge, T. J., 1999. Structures of gram-negative cell walls and their derived membrane vesicles. Journal of Bacteriology, 181, 4725–4733.

    Google Scholar 

  • Bosak, T., and Newman, D. K., 2003. Microbial nucleation of calcium carbonate in the Precambrian. Geology, 31, 577–580.

    Article  Google Scholar 

  • Bosak, T., and Newman, D. K., 2005. Microbial kinetic controls on calcite morphology in supersaturated solutions. Journal of Sedimentary Research, 75, 190–199.

    Article  Google Scholar 

  • Bosak, T., Souza-Egipsy, V., Corsetti, F. A., and Newman, D. K., 2004a. Micrometer-scale porosity as a biosignature in carbonate crusts. Geology, 32, 781–784.

    Article  Google Scholar 

  • Bosak, T., Souza-Egipsy, V., and Newman, D. K., 2004b. An abiotic model for peloid formation. Geobiology, 2, 189–198.

    Article  Google Scholar 

  • Braissant, O., Cailleau, G., Dupraz, C., and Verrecchia, E. P., 2003. Bacterially induced mineralization of calcium carbonate in terrestrial environments: the role of exopolysaccharides and amino acids. Journal of Sedimentary Research, 73, 485–490.

    Article  Google Scholar 

  • Braissant, O., Verrecchia, E., and Aragno, M., 2002. Is the contribution of bacteria to terrestrial carbon budget greatly underestimated? Naturwissenschaften, 89, 366–370.

    Article  Google Scholar 

  • Brehm, U., Krumbein, W. E., and Palinska, K. A., 2006. Biomicrospheres generate ooids in the laboratory. Geomicrobiology Journal, 23, 545–550.

    Article  Google Scholar 

  • Chafetz, H. S., and Buczynski, C., 1992. Bacterially induced lithification of microbial mats. Palaios, 7, 277–293.

    Article  Google Scholar 

  • Chekroun, K. B., Rodriguez-Navarro, C., Gonzalez-Munoz, M. T., Arias, J. M., Cultrone, G., and Rodriguez-Gallego, M., 2004. Precipitation and growth morphology of calcium carbonate induced by Myxococcus xanthus: implications for recognition of bacterial carbonates. Journal of Sedimentary Research, 74, 868–876.

    Article  Google Scholar 

  • Davies, P. J., Bubela, B., and Ferguson, J., 1978. The formation of ooids. Sedimentology, 25, 703–730.

    Article  Google Scholar 

  • Decho, A. W., Visscher, P. T., and Reid, R. P., 2005. Production and cycling of natural microbial exopolymers (EPS) within a marine stromatolite. Palaeogeography Palaeoclimatology Palaeoecology, 219, 71–86.

    Article  Google Scholar 

  • Dupraz, C., and Visscher, P. T., 2005. Microbial lithification in marine stromatolites and hypersaline mats. Trends in Microbiology, 13, 429–438.

    Article  Google Scholar 

  • Dupraz, C., Pattisina, R., and Verrecchia, E. P., 2006. Translation of energy into morphology: simulation of stromatolite morphospace using a stochastic model. Sedimentary Geology, 185, 185–203.

    Article  Google Scholar 

  • Gautret, P., De Wit, R., Camoin, G., and Golubic, S., 2006. Are environmental conditions recorded by the organic matrices associated with precipitated calcium carbonate in cyanobacterial microbialites? Geobiology, 4, 93–107.

    Article  Google Scholar 

  • Golubic, S., Seong-Joo, L., and Browne, K., 2000, Cyanobacteria: architects of sedimentary structures, In Riding, R., and Awramik, S. M. (eds.), Microbial Sediments. New York: Springer.

    Google Scholar 

  • Grotzinger, J. P., and Knoll, A. H., 1999. Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? Annual Review of Earth and Planetary Sciences, 27, 313–358.

    Article  Google Scholar 

  • Grotzinger, J. P., and Rothman, D. H., 1996. An abiotic model for stromatolite morphogenesis. Nature, 383, 423–425.

    Article  Google Scholar 

  • Hillgartner, H., Dupraz, C., and Hug, W., 2001. Microbially induced cementation of carbonate sands: are micritic meniscus cements good indicators of vadose diagenesis? Sedimentology, 48, 117–131.

    Article  Google Scholar 

  • Husinec, A., and Reid, J. F., 2006. Transgressive oversized radial ooid facies in the Late Jurassic Adriatic Platform interior: low-energy precipitates from highly supersaturated hypersaline waters. GSA Bulletin, 118, 550–556.

    Article  Google Scholar 

  • Kawaguchi, T., and Decho, A. W., 2002. A laboratory investigation of cyanobacterial extracellular polymeric secretions (EPS) in influencing CaCO3 polymorphism. Journal of Crystal Growth, 240, 230–235.

    Article  Google Scholar 

  • Kuehn, M., and Kesty, N., 2005. Bacterial outer membrane vesicles and the host–pathogen interaction. Genes and Development, 19, 2645–2655.

    Article  Google Scholar 

  • Lepot, K., Benzerara, K., Brown, G. E., and Philippot, P., 2008. Microbially influenced formation of 2,724-million-year-old stromatolites. Nature Geoscience, 1, 118–121.

    Article  Google Scholar 

  • Liu, X. Y., and DeYoreo, J. J., 2004, Nanoscale Structure and Assembly at Solid-Fluid Interfaces. Boston: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Merz-Preiß, M., and Riding, R., 1999. Cyanobacterial tufa calcification in two freshwater streams: ambient environment, chemical thresholds and biological processes. Sedimentary Geology, 126, 103–124.

    Article  Google Scholar 

  • Merz-Preiß, M., and Zankl, H., 1993. The influence of the sheath on carbonate precipitation by cyanobacteria. Bollettino della Società Paleontologica Italiana, (Spec Vol), pp. 325–331.

    Google Scholar 

  • Plant, L. J., and House, W. A., 2002. Precipitation of calcite in the presence of inorganic phosphate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 203, 143–153.

    Article  Google Scholar 

  • Plee, K., Ariztegui, D., Martini, R., and Davaud, E., 2008. Unravelling the microbial role in ooid formation - results of an in situ experiment in modern freshwater Lake Geneva in Switzerland. Geobiology, 6, 341–350.

    Article  Google Scholar 

  • Reid, R. P., Visscher, P. T., Decho, A. W., Stolz, J. F., Bebout, B. M., Dupraz, C., Macintyre, L. G., Paerl, H. W., Pinckney, J. L., Prufert-Bebout, L., Steppe, T. F., and DesMarais, D. J., 2000. The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature, 406, 989–992.

    Article  Google Scholar 

  • Reitner, J., Peckmann, J., Blumenberg, M., Michaelis, W., Reimer, A., and Thiel, V., 2005. Concretionary methane-seep carbonates and associated microbial communities in Black Sea sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 227, 18–30.

    Article  Google Scholar 

  • Sprachta, S., Camoin, G., Golubic, S., and Le Campion, T., 2001. Microbialites in a modern lagoonal environment: nature and distribution, Tikehau atoll (French Polynesia). Palaeogeography Palaeoclimatology Palaeoecology, 175, 103–124.

    Article  Google Scholar 

  • Suess, E., and Futterer, D., 1972. Aragonitic ooids 1: experimental precipitation from seawater in the presence of humic acid. Sedimentology, 19, 129–139.

    Article  Google Scholar 

  • Teng, H. H., Dove, P. M., Orme, C. A., and De Yoreo, J. J., 1998. Thermodynamics of calcite growth: baseline for understanding biomineral formation. Science, 282, 724–727.

    Article  Google Scholar 

  • Thompson, J. B., 2000, Microbial whitings, In Riding, R., and Awramik, S. M. (eds.), Microbial Sediments. Berlin Heidelberg: Springer, pp. 250–260.

    Google Scholar 

  • Thompson, J. B., Schultze-Lam, S., Beveridge, T. J., and DesMarais, D. J., 1997. Whiting events: biogenic origin due to the photosynthetic activity of cyanobacterial phytoplankton. Limnology and Oceanography, 42, 133–141.

    Article  Google Scholar 

  • Van Lith, Y., Warthmann, R., Vasconcelos, C., and McKenzie, J. A., 2003. Sulphate-reducing bacteria induce low-temperature Ca-dolomite and high Mg-calcite formation. Geobiology, 1, 71–79.

    Article  Google Scholar 

  • Visscher, P. T., Reid, R. P., and Bebout, B. M., 2000. Microscale observations of sulfate reduction: correlation of microbial activity with lithified micritic laminae in modern marine stromatolites. Geology, 28, 919–922.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Bosak, T. (2011). Calcite Precipitation, Microbially Induced. In: Reitner, J., Thiel, V. (eds) Encyclopedia of Geobiology. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9212-1_41

Download citation

Publish with us

Policies and ethics