Encyclopedia of Geobiology

2011 Edition
| Editors: Joachim Reitner, Volker Thiel

Calcite Precipitation, Microbially Induced

  • Tanja Bosak
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-9212-1_41

Definition

Microbially induced calcite precipitation describes the formation of calcium carbonate minerals from a solution due to the presence of microbial cells, biosynthetic products, or metabolic activity.

Calcium carbonate precipitation

The most basic requirement for the precipitation of calcium carbonate (CaCO 3) minerals, calcite, and aragonite is that the product of the concentrations of calcium [Ca 2+] and carbonate ions [CO 3 2−] exceeds the solubility product of calcite (Equation 1) and aragonite, respectively.
$$[{\rm Ca}^{2 +} ][{{\rm CO}_3}^{2 -} ] > 10^{-8.35}$$

Keywords

Extracellular Polymeric Substance Calcium Carbonate Calcium Oxalate Soda Lake Calcium Carbonate Precipitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Bibliography

  1. Aloisi, G., Gloter, A., Kruger, M., Wallmann, K., Guyot, F., and Zuddas, P., 2006. Nucleation of calcium carbonate on bacterial nanoglobules. Geology, 34, 1017–1020.CrossRefGoogle Scholar
  2. Arp, G., Reimer, A., and Reitner, J., 1999a. Calcification in cyanobacterial biofilms of alkaline salt lakes. European Journal of Phycology, 34.Google Scholar
  3. Arp, G., Thiel, V., Reimer, A., Michaelis, W., and Reitner, J., 1999b. Biofilm exopolymers control microbialite formation at thermal springs discharging into the alkaline Pyramid Lake, Nevada, USA. Sedimentary Geology, 126, 159–176.CrossRefGoogle Scholar
  4. Arp, G., Reimer, A., and Reitner, J., 2001. Photosynthesis-induced biofilm calcification and calcium concentrations in Phanerozoic oceans. Science, 292, 1701–1704.CrossRefGoogle Scholar
  5. Arp, G., Reimer, A., and Reitner, J., 2003. Microbialite formation in seawater of increased alkalinity, Satonda Crater Lake, Indonesia. Journal of Sedimentary Research, 73, 105–127.CrossRefGoogle Scholar
  6. Batchelor, M. T., Burne, R. V., Henry, B. I., and Jackson, M. J., 2004. A case for biotic morphogenesis of coniform stromatolites. Physica a-Statistical Mechanics and Its Applications, 337, 319–326.CrossRefGoogle Scholar
  7. Benzerara, K., Menguy, N., Lopez-Garcia, P., Yoon, T.-H., Kazmierczak, J., Tyliszczak, T., Guyot, F., and Brown, G. E. Jr., 2006. Nanoscale detection of organic signatures in carbonate microbialites. Proceedings of the National Academy of Sciences, 103, 9440–9445.CrossRefGoogle Scholar
  8. Beveridge, T. J., 1999. Structures of gram-negative cell walls and their derived membrane vesicles. Journal of Bacteriology, 181, 4725–4733.Google Scholar
  9. Bosak, T., and Newman, D. K., 2003. Microbial nucleation of calcium carbonate in the Precambrian. Geology, 31, 577–580.CrossRefGoogle Scholar
  10. Bosak, T., and Newman, D. K., 2005. Microbial kinetic controls on calcite morphology in supersaturated solutions. Journal of Sedimentary Research, 75, 190–199.CrossRefGoogle Scholar
  11. Bosak, T., Souza-Egipsy, V., Corsetti, F. A., and Newman, D. K., 2004a. Micrometer-scale porosity as a biosignature in carbonate crusts. Geology, 32, 781–784.CrossRefGoogle Scholar
  12. Bosak, T., Souza-Egipsy, V., and Newman, D. K., 2004b. An abiotic model for peloid formation. Geobiology, 2, 189–198.CrossRefGoogle Scholar
  13. Braissant, O., Cailleau, G., Dupraz, C., and Verrecchia, E. P., 2003. Bacterially induced mineralization of calcium carbonate in terrestrial environments: the role of exopolysaccharides and amino acids. Journal of Sedimentary Research, 73, 485–490.CrossRefGoogle Scholar
  14. Braissant, O., Verrecchia, E., and Aragno, M., 2002. Is the contribution of bacteria to terrestrial carbon budget greatly underestimated? Naturwissenschaften, 89, 366–370.CrossRefGoogle Scholar
  15. Brehm, U., Krumbein, W. E., and Palinska, K. A., 2006. Biomicrospheres generate ooids in the laboratory. Geomicrobiology Journal, 23, 545–550.CrossRefGoogle Scholar
  16. Chafetz, H. S., and Buczynski, C., 1992. Bacterially induced lithification of microbial mats. Palaios, 7, 277–293.CrossRefGoogle Scholar
  17. Chekroun, K. B., Rodriguez-Navarro, C., Gonzalez-Munoz, M. T., Arias, J. M., Cultrone, G., and Rodriguez-Gallego, M., 2004. Precipitation and growth morphology of calcium carbonate induced by Myxococcus xanthus: implications for recognition of bacterial carbonates. Journal of Sedimentary Research, 74, 868–876.CrossRefGoogle Scholar
  18. Davies, P. J., Bubela, B., and Ferguson, J., 1978. The formation of ooids. Sedimentology, 25, 703–730.CrossRefGoogle Scholar
  19. Decho, A. W., Visscher, P. T., and Reid, R. P., 2005. Production and cycling of natural microbial exopolymers (EPS) within a marine stromatolite. Palaeogeography Palaeoclimatology Palaeoecology, 219, 71–86.CrossRefGoogle Scholar
  20. Dupraz, C., and Visscher, P. T., 2005. Microbial lithification in marine stromatolites and hypersaline mats. Trends in Microbiology, 13, 429–438.CrossRefGoogle Scholar
  21. Dupraz, C., Pattisina, R., and Verrecchia, E. P., 2006. Translation of energy into morphology: simulation of stromatolite morphospace using a stochastic model. Sedimentary Geology, 185, 185–203.CrossRefGoogle Scholar
  22. Gautret, P., De Wit, R., Camoin, G., and Golubic, S., 2006. Are environmental conditions recorded by the organic matrices associated with precipitated calcium carbonate in cyanobacterial microbialites? Geobiology, 4, 93–107.CrossRefGoogle Scholar
  23. Golubic, S., Seong-Joo, L., and Browne, K., 2000, Cyanobacteria: architects of sedimentary structures, In Riding, R., and Awramik, S. M. (eds.), Microbial Sediments. New York: Springer.Google Scholar
  24. Grotzinger, J. P., and Knoll, A. H., 1999. Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? Annual Review of Earth and Planetary Sciences, 27, 313–358.CrossRefGoogle Scholar
  25. Grotzinger, J. P., and Rothman, D. H., 1996. An abiotic model for stromatolite morphogenesis. Nature, 383, 423–425.CrossRefGoogle Scholar
  26. Hillgartner, H., Dupraz, C., and Hug, W., 2001. Microbially induced cementation of carbonate sands: are micritic meniscus cements good indicators of vadose diagenesis? Sedimentology, 48, 117–131.CrossRefGoogle Scholar
  27. Husinec, A., and Reid, J. F., 2006. Transgressive oversized radial ooid facies in the Late Jurassic Adriatic Platform interior: low-energy precipitates from highly supersaturated hypersaline waters. GSA Bulletin, 118, 550–556.CrossRefGoogle Scholar
  28. Kawaguchi, T., and Decho, A. W., 2002. A laboratory investigation of cyanobacterial extracellular polymeric secretions (EPS) in influencing CaCO3 polymorphism. Journal of Crystal Growth, 240, 230–235.CrossRefGoogle Scholar
  29. Kuehn, M., and Kesty, N., 2005. Bacterial outer membrane vesicles and the host–pathogen interaction. Genes and Development, 19, 2645–2655.CrossRefGoogle Scholar
  30. Lepot, K., Benzerara, K., Brown, G. E., and Philippot, P., 2008. Microbially influenced formation of 2,724-million-year-old stromatolites. Nature Geoscience, 1, 118–121.CrossRefGoogle Scholar
  31. Liu, X. Y., and DeYoreo, J. J., 2004, Nanoscale Structure and Assembly at Solid-Fluid Interfaces. Boston: Kluwer Academic Publishers.CrossRefGoogle Scholar
  32. Merz-Preiß, M., and Riding, R., 1999. Cyanobacterial tufa calcification in two freshwater streams: ambient environment, chemical thresholds and biological processes. Sedimentary Geology, 126, 103–124.CrossRefGoogle Scholar
  33. Merz-Preiß, M., and Zankl, H., 1993. The influence of the sheath on carbonate precipitation by cyanobacteria. Bollettino della Società Paleontologica Italiana, (Spec Vol), pp. 325–331.Google Scholar
  34. Plant, L. J., and House, W. A., 2002. Precipitation of calcite in the presence of inorganic phosphate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 203, 143–153.CrossRefGoogle Scholar
  35. Plee, K., Ariztegui, D., Martini, R., and Davaud, E., 2008. Unravelling the microbial role in ooid formation - results of an in situ experiment in modern freshwater Lake Geneva in Switzerland. Geobiology, 6, 341–350.CrossRefGoogle Scholar
  36. Reid, R. P., Visscher, P. T., Decho, A. W., Stolz, J. F., Bebout, B. M., Dupraz, C., Macintyre, L. G., Paerl, H. W., Pinckney, J. L., Prufert-Bebout, L., Steppe, T. F., and DesMarais, D. J., 2000. The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature, 406, 989–992.CrossRefGoogle Scholar
  37. Reitner, J., Peckmann, J., Blumenberg, M., Michaelis, W., Reimer, A., and Thiel, V., 2005. Concretionary methane-seep carbonates and associated microbial communities in Black Sea sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 227, 18–30.CrossRefGoogle Scholar
  38. Sprachta, S., Camoin, G., Golubic, S., and Le Campion, T., 2001. Microbialites in a modern lagoonal environment: nature and distribution, Tikehau atoll (French Polynesia). Palaeogeography Palaeoclimatology Palaeoecology, 175, 103–124.CrossRefGoogle Scholar
  39. Suess, E., and Futterer, D., 1972. Aragonitic ooids 1: experimental precipitation from seawater in the presence of humic acid. Sedimentology, 19, 129–139.CrossRefGoogle Scholar
  40. Teng, H. H., Dove, P. M., Orme, C. A., and De Yoreo, J. J., 1998. Thermodynamics of calcite growth: baseline for understanding biomineral formation. Science, 282, 724–727.CrossRefGoogle Scholar
  41. Thompson, J. B., 2000, Microbial whitings, In Riding, R., and Awramik, S. M. (eds.), Microbial Sediments. Berlin Heidelberg: Springer, pp. 250–260.Google Scholar
  42. Thompson, J. B., Schultze-Lam, S., Beveridge, T. J., and DesMarais, D. J., 1997. Whiting events: biogenic origin due to the photosynthetic activity of cyanobacterial phytoplankton. Limnology and Oceanography, 42, 133–141.CrossRefGoogle Scholar
  43. Van Lith, Y., Warthmann, R., Vasconcelos, C., and McKenzie, J. A., 2003. Sulphate-reducing bacteria induce low-temperature Ca-dolomite and high Mg-calcite formation. Geobiology, 1, 71–79.CrossRefGoogle Scholar
  44. Visscher, P. T., Reid, R. P., and Bebout, B. M., 2000. Microscale observations of sulfate reduction: correlation of microbial activity with lithified micritic laminae in modern marine stromatolites. Geology, 28, 919–922.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Tanja Bosak
    • 1
  1. 1.Department of Earth Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeUSA