Skip to main content

Biosignatures in Rocks

  • Reference work entry

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

Biosignatures are morphological, chemical (organic, elemental and/or mineral), and isotopic traces of organisms preserved in minerals, sediments, and rocks. They represent the physical presence of the organisms as well as evidence of their metabolic activities and metabolites.

The nature of biosignatures

In this entry, we review (1) the nature of biosignatures in rocks, (2) how they are produced, and (3) the relevance of biosignatures and their astrobiological implications. Examples of biosignatures from throughout the rock record are given. We will limit our discussion to microbial biosignatures.

Microorganisms are characterized by (1) structural components, such as cells, colonies, biofilms/mats, extracellular polymeric substances (EPS); (2) the chemical composition of the different structural elements, including organic molecules and other essential elements; and (3) their living processes, including metabolic activity leading to the fractionation of elements such as C,...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  • Albeck, S., Addadi, L., and Weiner, S., 1996. Regulation of calcite crystal morphology by intracrystalline acidic proteins and glycoproteins. Connective Tissue Research, 35, 419–424.

    Article  Google Scholar 

  • Allwood, A. C., Walter, M. R., Kamber, B. S., Marshall, C. P., and Burch, I. W., 2006. Stromatolite reef from the Early Archaean era of Australia. Nature, 441, 714–718.

    Article  Google Scholar 

  • Banerjee, N. R., Furnes, H., Muehlenbachs, K., Staudigel, H., and de Wit, M., 2006. Preservation of 3.4–3.5 Ga microbial biomarkers in pillow lavas and hyaloclastites from the Barberton greenstone belt, South Africa. Earth and Planetary Science Letters, 241, 707–722.

    Article  Google Scholar 

  • Banfield, J. F., Moreau, J. W., Chan, C. S., Welch, S. A., and Little, B., 2001. Mineralogical biosignatures in search for life on Mars. Astrobiology, 1, 447–465.

    Article  Google Scholar 

  • Bazylinski, D. A., Frankel, R. B., Heywood, B. R., Mann, S., King, J. W., Donaghay, P. L., and Hanson, A. K., 1995. Controlled biomineralisation of magnetite (Fe3O4) and greigite (Fe3S4) in a magnetotactic bacterium. Applied and Environmental Microbiology, 61, 3232–3239.

    Google Scholar 

  • Beveridge, T. J., Forsberg, C. W., and Doyle, R. J., 1982. Major sites of metal binding in Bacillus lichenformis walls. Journal of Bacteriology, 150, 1438–1448.

    Google Scholar 

  • Brack, A., 2002. Water, the spring of life. In Horneck G., and Baumstark-Khan, C. (eds.), Astrobiology. The Quest for the Conditions of Life. Berlin: Springer, pp. 79–88.

    Chapter  Google Scholar 

  • Brocks, J. J., Logan, G. A., Buick, R., and Summons, R. E., 1999. Archean molecular fossils and the early rise of eukaryotes. Science, 285, 1033–1036.

    Article  Google Scholar 

  • Burne, R. V., and Moore, L. S., 1987. Microbialites: organosedimentary deposits of benthic microbial communities. Palaios, 2, 241–254.

    Article  Google Scholar 

  • Byerly, G. R., Walsh, M. M., and Lowe, D. L., 1986. Stromatolites from the 3300–3500 Myr Swaziland Supergroup, Barberton Mountain Land, South Africa. Nature, 319, 489–491.

    Article  Google Scholar 

  • Cady, S. L., and Farmer, J. D., 1996. Fossilization processes in siliceous thermal springs: trends in preservation along thermal gradients. In Bock, G. R., and Goode, J. A. (eds.), Evolution of Hydrothermal Ecosystems on Earth (and Mars?), Ciba Foundation Symposium 202. Chichester: Wiley, pp. 150–173.

    Google Scholar 

  • Cairns-Smith, A. G., 1978. Precambrian solution photochemistry, inverse segregation, and banded iron formations. Nature, 276, 807–808.

    Article  Google Scholar 

  • Canfeld, D. E., and Raiswell, R., 1991. Pyrite formation and fossil preservation. In Allison, P. A., and Briggs, D. E. G. (eds.), Taphonomy: Releasing the Data Locked in the Fossil Record. New York: Plenum, pp. 337–387.

    Google Scholar 

  • Cavalazzi, B., 2007. Chemotrophic filamentous microfossils from the Hollard Mound (Devonian, Morocco) as investigated by focus ion beam. Astrobiology, 7, 402–415.

    Article  Google Scholar 

  • Cavalazzi, B., Barbieri, R., and Ori, G. G., 2007. Chemosynthetic microbialites in the Devonian carbonate mounds of Hamar Laghdad (Anti-Atlas, Morocco). Sedimentary Geology, 200, 73–88.

    Article  Google Scholar 

  • Chafetz, H. S., and Folk, R. L., 1984. Travertines: depositional morphology and the bacterially constructed constituents. Journal of Sedimentary Research, 54, 289–316.

    Google Scholar 

  • Chang, S.-B. R., and Kirschvink, J. L., 1989. Magnetofossils, the magnetization of sediments, and the evolution of magnetite biomineralization. Annual Review of Earth and Planetary Sciences, 17, 169–195.

    Article  Google Scholar 

  • Cloud, P. E., 1965. Significance of the Gunflint (Precambrian) microflora. Science, 148, 27–35.

    Article  Google Scholar 

  • Cronin, J. R., 1998. Clues from the origin of the Solar System: meteorites. In Brack, A. (ed.), The Molecular Origins of Life: Assembling Pieces of the Puzzle. Cambridge: Cambridge University Press, pp. 119–146.

    Google Scholar 

  • Derenne, S., Robert, F., Skryzpczak-Bonduelle, A., Gourier, D., Binet, L., and Rouzaud, J. -N., 2008. Molecular evidence for life in the 3.5 billion-year old Warreawoona chert. Earth and Planetary Science Letters, 272, 476–480.

    Article  Google Scholar 

  • Douglas, S., Abbey, W., Mielke, R., Conrad, P., and Kanik, I., 2008. Textural and mineralogical biosignatures in an unusual microbialite from Death Valley, California. Icarus, 193, 620–636.

    Article  Google Scholar 

  • Eigenbrode, J., and Freeman, K. H., 2006. Late Archaean rise of aerobic microbial ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 103, 15759–15764.

    Article  Google Scholar 

  • Ferris, G., Fyfe, W. S., and Beveridge, T. J., 1988. Metallic ion biding by Bacillus subtilis: implications for the fossilization of microorganisms. Geology, 16, 149–152.

    Article  Google Scholar 

  • Flugel, E., 2004. Microfacies of Carbonate Rocks. Analysis, Interpretation and Application. Berlin, Heidelberg: Springer.

    Google Scholar 

  • Friedmann, E. I., Wierzchos, J., Ascaso, C., and Winklhofer, M., 2001. Chains of magnetite crystals in the meteorite ALH84001: evidence of biological origin. Proceedings of the National Academy of Sciences of the United States of America, 98, 2176–2181.

    Article  Google Scholar 

  • Furnes, H., Banerjee, N. R., Muehlenbachs, K., Staudigel, H., and de Wit, M., 2004. Early life recorded in Archean pillow lavas. Science, 304, 578–581.

    Article  Google Scholar 

  • García-Ruiz, J. M., Hyde, S. T., Carnerup, A. M., Christy, A. G., van Kranendonk, M. J., and Welham, N. J., 2003. Self-assembled silica-carbonate structures and detection of ancient microfossils. Science, 302, 1194–1197.

    Article  Google Scholar 

  • Geesey, G. G., and Jang, L., 1989. Interactions between metal ions and capsular polymer. In Beveridge, T. J., and Doyle, R. J. (eds.), Metal Ions and Bacteria. New York: Wiley, pp. 325–357.

    Google Scholar 

  • Golden, D. C., Ming, D. W., Morris, R. V., Brearley, A. J., Lauer, Jr. H. V., Treiman, A. H., Zolensky, M. E., Schwandt, C. S., Lofgren, G. E., and McKay, G. A., 2004. Evidence for exclusively inorganic formation of magnetite in Martian meteorite ALH84001. American Mineralogist, 89, 681–695.

    Google Scholar 

  • Green, J. W., Knoll, A. H., and Swett, K., 1989. Microfossils from silicified stromatolitic carbonates of the Upper Proterozoic Limestone-Dolomite ‘Series’, central East Greenland. Geological Magazine, 126, 567–585.

    Article  Google Scholar 

  • Greinert, J., Bohrmann, G., and Elvert, M., 2002. Stromatolitic fabric of authigenic carbonate crusts in 4850 m water depth, Aleutian accretionary margin: result of anaerobic methane oxidation by archaea at cold seeps. International Journal of Earth Sciences, 91, 698–711.

    Article  Google Scholar 

  • Hofmann, H. J., Grey, K., Hickman, A. H., and Thorpe, R. I., 1999. Origin of 3.45 Ga coniform stromatolites in Warrawoona Group, Western Australia. Geological Society of America Bulletin, 111, 1256–1262.

    Article  Google Scholar 

  • Javaux, E. J., Knoll, A. H., and Walter, M. R., 2001. Morphological and ecological complexity in early eukaryotic ecosystems. Nature, 412, 66–69.

    Article  Google Scholar 

  • Jones, B., 2004. Microbial silicification in Iodine Pool, Waimangu geothermal area, North Island, New Zealand: implications for recognition and identification of ancient silicified microbes. Geological Society, London, 161, 983–993.

    Article  Google Scholar 

  • Jones, B., Renaut, R. W., and Rosen, M. R., 2001. Taphonomy of Silicified Filamentous Microbes in Modern Geothermal Sinters-Implications for Identification. Palaios, 16, 580–592.

    Article  Google Scholar 

  • Kazmierczak, J., and Altermann, W., 2002. Neoarchean biomineralization by benthic cyanobacteria. Science, 298, 2351.

    Article  Google Scholar 

  • Kelley, D. S., Karson, J. A., Früh-Green, G. L., Yoerger, D. R., Shank, T. M., Butterfield, D. A., Hayes, J. M., Schrenk, M. O., Olson, E. J., Proskurowski, G., Jakuba, M., Bradley, A., Larson, B., Ludwig, K., Glickson, D., Buckman, K., Bradley, A. S., Brazelton, W. J., Roe, K., Elend, M. J., Delacour, A., Bernasconi, S. M., Lilley, M. D., Baross, J. A., Summons, R. E., and Sylva, S. P., 2005. A serpentinite-hosted submarine ecosystem: The Lost City hydrothermal field. Science, 307, 1428–1434.

    Article  Google Scholar 

  • Kiriakoulakis, K., Marshall, J. D., and Wolff, G. A., 2000. Biomarkers in a Lower Jurassic concretion from Dorset (UK). Journal of the Geological Society, 157, 207–220.

    Article  Google Scholar 

  • Knoll, A. H., 1985. Exceptional preservation of photosynthetic organisms in silicified carbonates and silicified peats. Philosophical Transactions of the Royal Society B: Biological Sciences, 311, 111–122.

    Article  Google Scholar 

  • Knoll, A. H., Fairchild, I. J., and Swett, K., 1993. Calcified microbes in Neoproterozoic carbonates: implications for our understanding of the Proterozoic/Cambrian transition. Palaois, 8, 512–525.

    Article  Google Scholar 

  • Konhauser, K. O., 2000. Hydrothermal bacterial biomineralisation: potential modern-day analogues for Precambrian banded iron formation. In Glenn, C. R., Prévôt-Lucas, L., and Lucas, J. (eds.), Marine Authigenesis: from Global to Microbial. SEPM Special Publications No 66, pp. 133–145.

    Google Scholar 

  • Konhauser, K. O., 2007. Introduction to Geomicrobiology. Oxford: Blackwell Science.

    Google Scholar 

  • Konhauser, K. O., Fyfe, W. S., Schultze-Lam, S., Ferris, F. G., and Beveridge, T. J., 1994. Iron phosphate precipitation by epilithic microbial biofilms in Arctic Canada. Canadian Journal of Earth Sciences, 31, 1320–1324.

    Article  Google Scholar 

  • Kucha, H., Schroll, E., and Strumpfl, E. F., 2005. Fossil sulphate-reducing bacteria in the Bleiberg lead-zinc deposit, Austria. Mineralium Depositum, 40, 123–126.

    Article  Google Scholar 

  • Lalonde, S. V., Konhauser, K. O., Reysenbach, A. -L., and Ferris, F. G., 2005. The experimental silicification of Aquificales and their role in hot spring sinter formation. Geobiology, 3, 41–52.

    Article  Google Scholar 

  • Laval, B., Cady, S. L., Pollack, J. C., McKay, C. P., Bird, J. S., Grotzinger, J. P., Ford, D. C., and Bohm, H. R., 2000. Modern freshwater microbialite analogues for ancient dendritic reef structures. Nature, 407, 626–629.

    Article  Google Scholar 

  • Ledin, M., Krantz-Rülker, C., and Allard, B., 1999. Microorganisms as metal sorbants: comparison with other soil constituents in multi-compartmental systems. Soil Biology and Biochemistry, 31, 1639–1648.

    Article  Google Scholar 

  • Lemelle, L., Labrot, P., Salomé, M., Simionovici, A., Viso, M., and Westall, F., 2008. In situ imaging of organic sulfur in 700–800 My-old Neoproterozoic microfossils by X-ray spectromicroscopy at the S K-edge. Organic Geochemistry, 39, 188–202.

    Article  Google Scholar 

  • Lepot, K., Benzerara, K., Brown, G., and Philippot, P., 2008. Microbially influenced formation of 2,724-million-year-old stromatrolites. Nature Geoscience, 1, 118–121.

    Article  Google Scholar 

  • Liebig, K., Westall, F., and Schmitz, M., 1996. A study of fossil microstructures from the Eocene Messel formation using transmission electron microscopy. Neues Jahrbuch fur Geologie und Palaontologie-Monatshefte, 4, 218–231.

    Google Scholar 

  • Lindsay, J. F., Brasier, M. D., McLoughlin, N., Green, O. R., Fogel, M., Steele, A., and Mertzman, S. A., 2005. The problem of deep carbon - an Archean paradox. Precambrian Research, 143, 19–22.

    Google Scholar 

  • Lowe, D. R., 1980. Stromatolites 3,400-Myr old from the Archean of Western Australia. Nature, 284, 441–443.

    Article  Google Scholar 

  • Lowe, D. R., 1994. Abiological origin of described stromatolites older than 3.2 Ga. Geology, 22, 287–390.

    Google Scholar 

  • MacIntyre, I. G., 1985. Submarine cements – the peloidal question. In Schneidermann, N., and Harris, P. M. (eds.), Carbonate Cements. SEPM Special Publications 36, pp. 109–116.

    Google Scholar 

  • Mann, S., 1988. Molecular recognition in biomineralisation. Nature, 332, 119–124.

    Article  Google Scholar 

  • Mann, S., Archibald, D. D., Didymus, J. M., Douglas, T., Heywood, B. R., Meldrum, F. C., and Reeves, N. J., 1993. Crystallisation at inorganic-organic interfaces-biominerals and biomimetic synthesis. Science, 261, 1286–1292.

    Article  Google Scholar 

  • Margulis, L., Barghoorn, E. S., Ashendorf, D., Banerjee, S., Chase, D., Francis, S., Giovannoni, S., and Stolz, J., 1980. The microbial community in the layered sediments at Laguna Figueroa, Baja California, Mexico: does it have Precambrian analogues. Precambrian Research, 11, 93–123.

    Article  Google Scholar 

  • Marshall, C. P., Javaux, E. J., Knoll, A. H., and Walter, M. R., 2005. Combined micro-Fourier transform infrared (FTIR) spectroscopy and micro-Raman spectroscopy of Proterozoic acritarchs: a new approach to Palaeobiology. Precambrian Research, 138, 208–224.

    Article  Google Scholar 

  • Maurette, M., Duprat, J., Engrand, C., Gounelle, M., Kurat, G., Matrajt, G., and Toppani, A., 2000. Accretion of neon, organics, CO2, nitrogen and water from large interplanetary dust particles on the early Earth. Planetary and Space Science, 48, 1117–1137.

    Article  Google Scholar 

  • McGuire, M. M., Edwards, K. J., Banfield, J. F., and Hammers, R. J., 2001. Kinetics, surface chemistry, and structural evolution of microbially mediated sulphide mineral dissolution. Geochimica et Cosmochimca Acta, 65, 57–72.

    Article  Google Scholar 

  • McKay, D. S., Gibson, E. K., Thomas-Keprta, K. L., Vali, H., Romanek, C. S., Clemett, S. J., Chillier, X. D. F., Maechling, C. R., and Zare, R. N., 1996. Search for past life on Mars: possible relic biogenic activity in martian meteorite ALH8400. Science, 273, 924–930.

    Article  Google Scholar 

  • Mero, J. L., 1962. Ocean-floor manganese nodules. Economic Geology, 57, 747–767.

    Article  Google Scholar 

  • Mojzsis, S. J., Arrhenius, G., McKeegan, K. D., Harrison, T. M., Nutman, A. P., and Friend, C. R. L., 1996. Evidence for life on Earth before 3,800 million years ago. Nature, 384, 55–59.

    Article  Google Scholar 

  • Monty, C. L. V., 1995. The rise and nature of carbonate mud-mounds: an introductory actualistic approach. In Monty, C. L. V., Bosence, D. W. J., Bridges, P. H., and Pratt, B. R. (eds.), Carbonate Mud-Mounds: Their Origin and Evolution. Oxford: Blackwell, International Association of Sedimentologists, Special Publication 23, pp. 11–48.

    Chapter  Google Scholar 

  • Monty, C. L. V., Westall, F., and Van Der Gaast, S., 1991. The diagenesis of siliceous particles in Subantartcic sediments, ODP Leg 114, Hole 699: possible microbial mediation. In Ciesielski, P. F., Kristoffersen, Y. et al. (eds.), Proceedings ODP Scientific Results, 114. College Station, TX (Ocean Drilling Program), pp. 685–710.

    Google Scholar 

  • Monty, C. L. V., Bosence, D. W. J., Bridges, P. H., and Pratt, B. R., 1995. Carbonate Mud-Mounds: Their Origin And Evolution. Oxford: Blackwell, International Association of Sedimentologists, Special Publication 23.

    Book  Google Scholar 

  • Noffke, N., 2008. Turbulent lifestyle: microbial mats on Earth’s sandy beaches-today and 3 billion years ago. GSA Today, 18(10), 4–9.

    Article  Google Scholar 

  • Noffke, N., Gerdes, G., and Klenke, Th., 2003. Benthic cyanobacteria and their influence on the sedimentary dynamics of peritidal depositional systems (siliciclastic, evaporitic salty and evaporitic carbonatic). Earth-Sciences Reviews, 12, 1–14.

    Google Scholar 

  • Orange, F., Westall, F., Prieur, D., Bienvenu, N., Le Romancer, M., Disnar, J. -R., and Défarge, C., 2009. Experimental silicification of the extremophilic Archaea Pyrococcus abyssi and Methanocaldoccus jannaschii. Applications in the search for evidence of life in early Earth and extraterrestrial rocks. Geobiology, 7, 403–418.

    Google Scholar 

  • Peckmann, J., and Thiel, V., 2004. Carbon cycling at ancient methane-seeps. Chemical Geology, 205, 443–467.

    Article  Google Scholar 

  • Pflug, H. D., 1979. Archean fossil finds resembling yeasts. Geologica et Palaeontologica, 13, 1–8.

    Google Scholar 

  • Pollmann, K., Raff, J., Merroun, M., Fahmy, K., and Selenska-Pobell, S., 2006. Metal binding by bacteria from uranium mining waste piles and its technological applications. Biotechnology Advances, 24, 58–68.

    Article  Google Scholar 

  • Posth, N. R., Hegler, F., Konhauser, K. O., and Kappler, A., 2008. Alternating Si and Fe deposition caused by temperature fluctuations in Precambrian oceans. Nature Geoscience, 1, 703–708.

    Article  Google Scholar 

  • Raiswell, R., and Fisher, Q. J., 2000. Mudrock-hosted carbonate concretions: a review of growth mechanisms and their influence on chemical and isotopic composition. Journal of the Geological Society, 157, 239–251.

    Article  Google Scholar 

  • Rasmussen, B., 2000. Filamentous microfossils in a 3,235-million-year-old volcanogenic massive sulphide deposit. Nature, 405, 676–679.

    Article  Google Scholar 

  • Rasmussen, B., Fletcher, I. R., Brocks, J. J., and Kilburn, M. R., 2008. Reassessing the first appearance of eukaryotes and cyanobacteria. Nature, 455, 1101–1104.

    Article  Google Scholar 

  • Riding, E. R., and Awramik, S. M., 2000. Microbial Sediments. Berlin Heidelberg: Springer.

    Google Scholar 

  • Riding, R., 2000. Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology, 47, 179–214.

    Article  Google Scholar 

  • Riding, R., 2008. Abiogenic, microbial and hybrid authigenic carbonate crusts: components of Precambrian stromatolites. Geologica Croata, 61, 73–103.

    Google Scholar 

  • Schidlowski, M., 1988. A 3800 million-year isotopic record of life from carbon in sedimentary rocks. Nature, 333, 313–318.

    Article  Google Scholar 

  • Shapiro, R. S., 2000. A comment on the systematic confusion of thrombolites. Palaios, 15, 166–169.

    Article  Google Scholar 

  • Southgate, P. N., 1986. Cambrian phoscrete profiles, coated grains, and microbial processes in phosphogenesis: Georgina Basin, Australia. Journal of Sedimentary Petrology, 56, 429–441.

    Google Scholar 

  • Summons, R. E., Jahnke, L. L., Hope, J. M., and Logan, J. H., 1999. 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature, 400, 554–557.

    Article  Google Scholar 

  • Summons, R. E., Albrecht, P., McDonald, G., and Moldowan, J. M., 2008. Molecular biosignatures. Space Science Reviews, 135, 115–132.

    Article  Google Scholar 

  • Taunton, A. E., Welch, S. A., and Bandfield, J. F., 2000a. Geo-microbial controls on light rare earth element, Y, and Ba distributions during granite weathering and soil formation. Journal of Alloys and Compounds, 303, 30–36.

    Article  Google Scholar 

  • Taunton, A. E., Welch, S. A., and Bandfield, J. F., 2000b. Microbial controls on phosphate and lanthanide distributions during granite weathering. Chemical Geology, 169, 371–382.

    Article  Google Scholar 

  • Thomas-Keprta, K. L., Bazylinski, D. A., Kirschvink, J. L., Clemett, S. J., McKay, D. S., Wentworth, S. J., Vali, H., Gibson, E. K., and Romanek, C. S., 2001. Truncated hexa-octahedral magnetite crystals in ALH84001: presumptive biosignatures. Proceedings of the National Academy of Sciences of the United States of America, 98, 2164–2169.

    Article  Google Scholar 

  • Thomas-Keprta, K. L., Clemett, S. J., Bazylinski, D. A., Kirschvink, J. L., McKay, D. S., Wentworth, S. J., Vali, H., Gibson, E. K., and Romanek, C. S., 2002. Magnetofossils from ancient Mars: a robust biosignature in the martian meteorite ALH84001. Applied and Environmental Microbiology, 68, 3663–3672.

    Article  Google Scholar 

  • Thorseth, I. H., Furnes, H., and Tumyr, O., 1995. Textural and chemical effects of bacterial activity on basaltic glass: an experimental approach. Chemical Geology, 119, 139–160.

    Article  Google Scholar 

  • van de Meer, M. T. J., Schouten, S., De Leeuw, J. W., and Ward, D. M., 2000. Autotrophy of green non-sulphur bacteria in hot spring microbial mats: biological explanations for isotopically heavy organic carbon in the geological record. Evironmental Microbiology, 2, 428–435.

    Article  Google Scholar 

  • van Zuilen, M., Lepland, A., and Arrhenius, G., 2002. Reassessing the evidence for the earliests traces of life. Nature, 418, 627–630.

    Article  Google Scholar 

  • van Zuilen, M. A., Chaussidon, M., Rollion-Bard, C., and Marty, B., 2007. Carbonaceous cherts of the Barberton greenstone belt, South Africa; isotopic, chemical, and structural characteristics of individual microstructures. Geochimica et Cosmochimica Acta, 71, 655–669.

    Article  Google Scholar 

  • Walsh, M. M., 1992. Microfossils and possible microfossils from the Early Archean Onverwacht Group, Barberton Mountain Land, South Africa. Precambrian Research, 54, 271–293.

    Article  Google Scholar 

  • Walsh, M., and Westall, F., 2008. Disentangling the microbial fossil record in the Barberton greenstone belt: a cautionary tale. In Seckbach, J., and Walsh, M. (eds.), From Fossil to Astrobiology. New York: Springer, pp. 25–37.

    Chapter  Google Scholar 

  • Walter, M. R., 1983. Archean stromatolites: evidence of the Earth’s earliest benthos. In Schopf, J. W. (ed.), Earth’s Earliest Biosphere. Princeton: Princeton University Press, pp. 187–213.

    Google Scholar 

  • Welch, S. A., Taunton, A. E., and Banfield, J. F., 2002. Effect of microorganisms and microbial metabolites on apatite dissolution. Geomicrobiology Journal, 19, 343–367.

    Article  Google Scholar 

  • Westall, F., 1994. Silicified bacteria and associated biofilm from the deep-sea sedimentary environment. Kaupia- Darmstädter Beiträge zur Naturgeschichte, 4, 29–43.

    Google Scholar 

  • Westall, F., 1997. The influence of cell wall composition on the fossilization of bacteria and the implications for the search for early life forms. In Cosmovici, C., Bowyer, S., and Werthimer, D. (eds.), Astronomical and Biochemical Origins and the Search for Life in the Universe. Bologna: Editori Compositrici, pp. 491–504.

    Google Scholar 

  • Westall, F., 2008. Morphological biosignatures in terrestrial and extraterrestrial materials. Space Science Reviews, 135, 95–114.

    Article  Google Scholar 

  • Westall, F., 2009. Life on an anaerobic planet. Science, 232, 471–472.

    Article  Google Scholar 

  • Westall, F., and Folk, R. L., 2003. Exogenous carbonaceous microstructures in Early Archaean cherts and BIFs from the Isua Greenstone Belt: implications for the search for life in ancient rocks. Precambrian Research, 126, 313–330.

    Article  Google Scholar 

  • Westall, F., and Southam, G., 2006. Early life on Earth. In Benn, K., Mareschal, J. C., and Condie, K. (eds.), Archean Geodynamics and Environments. AGU Geophysical Monographs No 164, pp. 283–304.

    Google Scholar 

  • Westall, F., Boni, L., and Guerzoni, E., 1995. The experimental silicification of microorganisms. Palaeontology, 38, 495–528.

    Google Scholar 

  • Westall, F., Steele, A., Toporski, J., Walsh, M., Allen, C., Guidry, S., Gibson, E., Mckay, D., and Chafetz, H., 2000. Polymeric substances and biofilms as biomarkers in terrestrial materials: implications for extraterrestrial samples. Journal of Geophysical Research, 105, 24,511–524,527.

    Article  Google Scholar 

  • Westall, F., De Wit, M. J., Dann, J., Van Der Gaast, S., De Ronde, C., and Gerneke, D., 2001. Early Archaean fossil bacteria and biofilms in hydrothermally influenced, shallow water sediments, Barberton greenstone belt, South Africa. Precambrian Research, 106, 91–112.

    Article  Google Scholar 

  • Westall, F., de Ronde, C. E. J., Southam, G., Grassineau, N., Colas, M., Cockell, C., and Lammer, H., 2006a. Implications of a 3.472–3.333 Gyr-old subaerial microbial mat from the Barberton greenstone belt, South Africa for the UV environmental conditions on the early Earth. Philosophical Transactions of the Royal Society B-Biological Sciences, 361, 1857–1875.

    Article  Google Scholar 

  • Westall, F., de Vries, S. T., Nijman, W., Rouchon, V., Orberger, B., Pearson, V., Watson, J., Verchovsky, A., Wright, I., Rouzaud, J.-N., Marchesini, D., and Anne, S., 2006b. The 3.466 Ga Kitty’s Gap Chert, an Early Archaean microbial ecosystem. In Reimold, W. U., and Gibson, R. (eds.), Processes on the Early Earth. GSA Special Publications No 405, pp. 105–131.

    Google Scholar 

  • White, B., 1974. Microfossils from the Late Precambrian Altyn Formation of Montana. Nature, 247, 452–453.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Westall, F., Cavalazzi, B. (2011). Biosignatures in Rocks. In: Reitner, J., Thiel, V. (eds) Encyclopedia of Geobiology. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9212-1_36

Download citation

Publish with us

Policies and ethics