Encyclopedia of Geobiology

2011 Edition
| Editors: Joachim Reitner, Volker Thiel

Silica Biomineralization, Sponges

  • Hermann Ehrlich
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-9212-1_31

Synonyms

Biosilicification, Silication

Definition

Biosilicification: The biological formation of opal-like amorphous hydrated silica. This phenomenon occurs on a globally vast scale in a wide variety of organisms, including protists, radiolarian, foraminifera, sponges, molluscs, brachiopods, copepods, ascidians, diatoms, and higher plants.

Biomineralization and biosilicification

Introduction

The growth in geobiology and biogeochemistry has led to a number of new existing research areas where the distinctions between the biological, chemical, and earth science disciplines melt away (Weiner and Dove, 2003). Of the intriguing topics that are receiving renewed attention, the study of biomineral formation based on organic templates is one of the most fascinating topics today. During the processes of biomineralization, the organic material acts variously as nucleator, cooperative modifier, and matrix or mold for the mineral ions with respect to biominerals formation which are characterized...

Keywords

Silicic Acid Biogenic Silica Sponge Spicule Siliceous Sponge Axial Filament 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Bibliography

  1. Aizenberg, J., Sundar, V. C., Yablon, A. D., Weaver, J. C., and Chen, G., 2004. Biological glass fibers: correlation between optical and structural properties. Proceedings of the National Academy of Sciences of the United States of America, 101, 3358–3363.CrossRefGoogle Scholar
  2. Bäuerlein, E., 2007. Handbook of biomineralization. In Bäuerlein, E., Behrens, P., and Epple, M., (eds.), Growth and Form: What is the Aim of Biomineralization? Weinheim: Wiley, pp. 1–20.Google Scholar
  3. Bavestrello, G., Bonito, M., and Sarà, M., 1993. Influence of depth on the size of sponge spicules. In Uriz, M. J., and Rützler, K. (eds.), Recent Advances in Ecology and Systematics of Sponges. Barcelona: Scientia Marina, Vol. 57(4), pp. 415–420.Google Scholar
  4. Bergquist, P. R., 1978. Sponges. London: Hutchinson & Co., Ltd.Google Scholar
  5. Botting, J., and Butterfield, N. J., 2005. Reconstructing early sponge relationships by using the Burgess Shale fossil Eiffelia globosa, Walcott. Proceedings of National Academy of Sciences of the United States of America, 102, 1554–1559.CrossRefGoogle Scholar
  6. Boury-Esnault, N., and Rutzler, K., 1997. Thesaurus of sponge morphology. Smithsonian Contributions to Zoology, 596, 1–55.CrossRefGoogle Scholar
  7. Brunner, E., Richthammer, P., Ehrlich, H., Paasch, S., Simon, P., Ueberlein, S., and van Pee, K.-H., 2009. Chitin-based organic networks – an integral part of cell wall biosilica from the diatom Thalassiosira pseudonana. Angewandte Chemie International Edition, doi:10.1002/anie200.Google Scholar
  8. Cha, J. N., Shimizu, K., Zhou, Y., Christiansen, S. C., Chmelka, B. F., Stucky, G. D., and Morse, D. E., 1999. Silicate in filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proceedings of National Academy of Sciences of the United States of America, 96, 361–365.CrossRefGoogle Scholar
  9. Conway, K. W., Krautter, M., Barrie, J. V., and Neuweiler, M., 2001. Hexactinellid sponge reefs on the Canadian continental shelf: a unique ‘living fossil’. Geoscience, Canada, 28(2), 71–78.Google Scholar
  10. Conway, K. W., Barrie, J. V., and Krautter, M., 2004. Modern siliceous sponge reefs in a turbid, siliciclastic setting: Fraser River delta, British Columbia, Canada. Neues Jahrbuch für Geologie und Paläontologie Monatschefte, 6, 335–350.Google Scholar
  11. Conway, K. W., Krautter, M., Barrie, J. V., Whitney, F., Thomson, R. E., Reiswig, H., Lehnert, H., Mungov, G., and Bertram, M., 2005. Sponge reefs in the Queen Charlotte Basin, Canada: controls on distribution, growth and development. In Freiwald, A., and Roberts, J. M. (eds.), Cold Water Corals and Ecosystems. Berlin: Springer, pp. 601–617.Google Scholar
  12. Dayton, P. K., 1979. Observations of growth, dispersal and population dynamics of some sponges in McMurdo Sound, Antarctica. In Lévi, C., and Boury-Esnault, N. (eds.), Colloques internationaux du C.N.R.S. 291. Biologie des spongiaires. Paris: E´ ditions du Centre National de la Recherche Scientifique, pp. 271–282.Google Scholar
  13. Dayton, P. K., Robilliard, G. A., Paine, R. T., and Dayton, L. B., 1974. Biological accommodation in the benthic community at the McMurdo Sound, Antarctica. Ecological Monographs, 44, 105–128.CrossRefGoogle Scholar
  14. De La Rocha, C. L., 2003. Silicon isotope fractionation by marine sponges and the reconstruction of the silicon isotope composition of ancient deep water. Geology, 31, 423–426.CrossRefGoogle Scholar
  15. De Vos, L., Rützler, K., Boury-Esnault, N., Donadey, C., and Vacelet, J., 1991. Atlas of Sponge Morphology. Washington: Smithonian Institution Press.Google Scholar
  16. Dohrmann, M., Janussen, D., Reitner, J., Collins, A., and Wörheide, G., 2008. Phylogeny and evolution of glass sponges (Porifera: Hexactinellida). Systematic Biology, 57(3), 388–405.CrossRefGoogle Scholar
  17. Ehrlich, H., 2010. Chitin and collagen as universal and alternative templates in biomineralization. International Geology Review (in press).Google Scholar
  18. Ehrlich, H., and Worch, H., 2007a. Collagen, a huge matrix in glass-sponge flexible spicules of the meter-long Hyalonema sieboldi. In Bäurlein, E. (ed.), Handbook of Biomineralization. The Biology of Biominerals Structure Formation, Weinheim: Wiley, Vol. 1, Chap. 2, pp. 23–41.Google Scholar
  19. Ehrlich, H., and Worch, H., 2007b. Sponges as natural composites: from biomimetic potential to development of new biomaterials. In Custodio, M. R., Lobo-Hajdu, G., Hajdu, E., and Muricy, G. (eds.), Porifera Research: Biodiversity, Innovation and Sustainability, pp. 217–223.Google Scholar
  20. Ehrlich, H., Ereskovsky, A., Drozdov, A., Krylova, D., Hanke, T., Meissner, H., Heinemann, S., and Worch, H., 2006. A modern approach to demineralisation of spicules in the glass sponges (Hexactinellida: Porifera) for the purpose of extraction and examination of the protein matrix. Russian Journal of Marine Biology, 32, 186–193.CrossRefGoogle Scholar
  21. Ehrlich, H., Krautter, M., Hanke, T., Simon, P., Knieb, C., Heinemann, S., and Worch, H., 2007. First evidence of the presence of chitin in skeletons of marine sponges. Part II. Glass sponges (Hexactinellida: Porifera): Journal of Experimental Zoology (Molecular Development and Evolution), 308B, 473–483.CrossRefGoogle Scholar
  22. Ehrlich, H., Kotsoulos, P. G., Demadis, K. D., and Pokrovsky, O., 2008a. Principles of demineralization: modern strategies for the isolation of organic frameworks. Part I. Common definitions and history. Micron, 39, 1062–1091.CrossRefGoogle Scholar
  23. Ehrlich, H., Heinemann, S., Heinemann, C., Simon, P., Bazhenov, V., Shapkin, N., Born, R., Tabachnick, K., Hanke, T., and Worch, H., 2008b. Nanostructural organization of naturally occuring composites. Part I. Silica-collagen-based biocomposites. Journal of Nanomaterials (published online, doi:10.1155/2008/623838).Google Scholar
  24. Ehrlich, H., Janussen, D., Simon, P., Heinemann, S., Bazhenov, V. V., Shapkin, N. P., Mertig, M., Erler, C., Born, R., Worch, H., and Hanke, T., 2008c. Nanostructural organisation of naturally occurring composites: Part II. Silica-chitin-based biocomposites, Journal of Nanomaterials (published online, Article ID 670235, 8 pages).Google Scholar
  25. Ellwood, M. J., Kelly, M., and de Forges, B. R., 2007. Silica banding in the deep-sea lithistid sponge Corallistes undulatus: investigating the potential influence of diet and environment on growth. Limnology and Oceanography, 52(5), 1865–1873.CrossRefGoogle Scholar
  26. Erpenbeck, D., Breeuwer, J. A. J., Parra-Velandia, F. J., and van Soest, R. W. M., 2006. Speculation with spiculation? – three independent gene fragments and biochemical characters versus morphology in demosponge higher classification. Molecular Phylogenetics and Evolution, 38, 293–305.CrossRefGoogle Scholar
  27. Exley, C., 1998. Silicon in life: a bioinorganic solution to bioorganic essentiality. Journal of Inorganic Biochemistry, 69, 139–153.CrossRefGoogle Scholar
  28. Fairhead, M., Johnson, K. A., Kowatz, T., McMahon, S. A., Carter, L. G., Oke, M., Liu, H., Naismith, J. H., and van der Walle, C. F., 2008. Crystal structure and silica condensing activities of silicatein a–cathepsin L chimeras. Chemical Communications, 21, 1765–1767.CrossRefGoogle Scholar
  29. Garrone, R., Simpson, T. L., and Pottu, J., 1981. Ultrastructure and deposition of silica in sponges. In Simpson, T. L., and Volcani, B. E. (eds.), Silicon and Siliceous Structures in Biological Systems. New York: Springer, pp. 495–525.CrossRefGoogle Scholar
  30. Gatti, S., 2002. High Antarctic carbon and silicon cycling – how much do sponges contribute? VI International Sponge Conference. In Book of Abstracts, Bollettino dei Musei Instituti Biologici. Genoa: University of Genoa, Vol. 66–67, p. 76.Google Scholar
  31. Hartman, W. D., 1981. Form and distribution of silica in sponges. In Simpson, T. S., and Volcani, B. E. (eds.), Silicon and Siliceous Structures in Biological Systems. New York: Springer, pp. 453–493.CrossRefGoogle Scholar
  32. Henrich, R., Hartmann, M., Reitner, J., Schäfer, P., Steinmetz, S., Freiwald, A., Dietrich, P., and Thiede, J., 1992. Facies belts, biocoenoses, volcanic structures and associated sediments, of the arctic seamount Vesterisbanken (Central Greenland Sea). Facies, 27, 71–104 Erlangen.CrossRefGoogle Scholar
  33. Holzhüter, G., Lakshminarayanan, K., and Gerber, T., 2005. Silica structure in the spicules of the sponge Suberites domuncula. Analytical and Bioanalytical Chemistry, 382, 1121–1126.CrossRefGoogle Scholar
  34. Hooper, J. A., and van Soest, R. W. M., 2002. Systema Porifera: A guide to the Classification of Sponges. New York: Kluwer.CrossRefGoogle Scholar
  35. Iijima, M., and Moriwaki, Y., 1990. Orientation of apatite and organic matrixin Lingula unguis shell. Calcified Tissue International, 47, 237–242.CrossRefGoogle Scholar
  36. Janussen, D., Tabachnick, K. R., and Tendal, O. S., 2004. Deep-sea Hexactinellida (Porifera) of the Weddell Sea. Deep-Sea Research II, 51, 1857–1882.CrossRefGoogle Scholar
  37. Kelly, M., 2000. Description of a new lithistid sponge from northeastern New Zealand and consideration of the phylogenetic affinities of families Corallistidae and Neopeltidae. Zoosystema, 22, 265–283.Google Scholar
  38. Kelly, M., 2003. Revision of the sponge genus Pleroma Sollas (Lithistida: Megamorina: Pleromidae) from New Zealand and New Caledonia, and description of a new species. NZ Journal of Marine and Freshwater Research, 37, 113–127.CrossRefGoogle Scholar
  39. Knoll, A., 2003. Biomineralization and evolutionary history. Reviews in Mineralogy and Geochemistry, 54, 329–356.CrossRefGoogle Scholar
  40. Kolb, V. M., Philip, A. I., and Perry, R. S., 2004. Testing the role of silicic acid and biochemical materials in the formation of rock coatings. In Hoover, R. B., Levin, G. V., and Rozanov, A.Y. (eds.), Instruments, Methods, and Missions for Astrobiology VIII. Bellingham: SPIE, pp. 116–125.CrossRefGoogle Scholar
  41. Koltun, V. M., 1968. Spicules of sponges as an element of bottom sediments in the Antarctic. SCAR Symp. Antarctic Oceanography. Cambridge: Scott Polar Research Institute.Google Scholar
  42. Kozhemyako, V. B., Veremeichik, G. N., Shkryl, Y. N., Kovalchuk, S. N., Krasokhin, V. B., Rasskazov, V. A., Zhuravlev, Y. N., Bulgakov, V. P., and Kulchin, Y. N., 2009. Silicatein genes in spicule-forming and nonspicule-forming Pacific Demosponges. Marine Biotechnology, doi: 10.1007/s10126–009–9225-y.Google Scholar
  43. Krautter, M., Conway, K. W., Barrie, J. V., and Neuweiler, M., 2001. Discovery of a ‘living dinosaur’: globally unique modern hexactinellid sponge reefs off British Columbia, Canada. Facies, 44, 265–282.CrossRefGoogle Scholar
  44. Krautter, M., Conway, K. W., and Barrie, J. V., 2006. Recent hexactinosidan sponge reefs (silicate mounds) off British Columbia, Canada: frame-building processes. Journal of Paleontology, 80(1), 38–48.CrossRefGoogle Scholar
  45. Lehnert, H., Conway, K. W., Barrie, J. V., and Krautter, M., 2005. Desmacella austini sp. nov. from sponge reefs off the Pacific coast of Canada. Contributions to Zoology, 74(3/4), 265–270.Google Scholar
  46. Lévi, C., 1973. Systématique de la classe des Demospongiaria (Démosponges). In Grassé’, P. (ed.), Spongiaires. Traité de Zoologie 3(1). Paris: Masson, pp. 577–632.Google Scholar
  47. Lévi, C., 1991. Lithistid sponges from the Norfolk rise. Recent and Mesozoic genera. In Reitner, J., and Keupp, H. (eds.), Fossil and Recent Sponges. Berlin: Springer, pp. 72–82.CrossRefGoogle Scholar
  48. Lévi, C., 1993. Porifera Demospongiae: spongiaires bathyaux de Nouvelle-Caledonie, récoltés par le ‘Jean Charcot’ Campagne BIOCAL, 1985. In Crosnier, A. (ed.), Résultats des Campagnes MUSORSTROM, 11. Paris: Mémoire du Muséum National d’Histoire Naturelle, pp. 9–87.Google Scholar
  49. Lévi, C., Barton, J. L., Guillemet, C., Le Bras, E., and Lehuede, P., 1989. A remarkably strong natural glassy rod: the anchoring spicule of the Monoraphis sponge. Journal of Materials Science Letters, 8, 337–339.CrossRefGoogle Scholar
  50. Leys, S. P., 2003. Comparative study of spiculogenesis in demosponge and hexactinellid larvae. Microscopical Research and Technology, 62, 300–311.CrossRefGoogle Scholar
  51. Leys, S. P., Mackie, G. O., and Reiswig, H. M., 2007. The biology of glass sponges. Advances in Marine Biology, 52, 1–145.CrossRefGoogle Scholar
  52. Maldonado, M., Carmona, M. C., Vela'squez, Z., Puig, A., Cruzado, A., Lo'pez, A., and Craig, M., 2005. Young siliceous sponges as a silicon sink: an overlooked aspect of benthopelagic coupling in the marine silicon cycle. Limnology and Oceanography, 50(3), 799–809.CrossRefGoogle Scholar
  53. Mann, D. G., and Droop, S. J. M., 1996. Biodiversity, biogeography and conservation of diatoms. Hydrobiologia, 336, 19–32.CrossRefGoogle Scholar
  54. Mehl, D., 1992. Die Entwicklung der Hexactinellida seit dem Mesozoikum: Paläobiologie, Phylogenie und Evolutionsökologie. Berliner geowissenschaftliche Abhandlungen, E, 2, 1–164.Google Scholar
  55. Mugnaioli, E., Natalio, F., Schloßmacher, U., Wang, X., Müller, W. E. G., and Kolb, U., 2009. Crystalline nanorods as possible templates for the synthesis of amorphous biosilica during spicule formation in Demospongiae. Chemistry and BioChemistry, 10, 683–689.Google Scholar
  56. Mukhopadhyay, J., Gutzmer, J., and Beukes, N. J., 2004. Organotemplate silica deposition in Neoproterozoic deep-marine environments: evidence from the Penganga Group, Adilabad, India. Terra Nova, 16, 338–343.CrossRefGoogle Scholar
  57. Müller, W. E. G., 2003. Silicon Biomineralization: Biology-Biochemistry-Molecular Biology-Biotechnology. Berlin: Springer.CrossRefGoogle Scholar
  58. Müller, W. E. G., Krasko, A., Le Pennec, G., and Schröder, H. C., 2003a. Biochemistry and cell biology of silica formation in sponges. Microscopical Research and Technology, 62, 368–377.CrossRefGoogle Scholar
  59. Müller, W. E. G., Krasko, A., Le Pennec, G., Steffen, R., Wiens, M., Ammar, M. S. A., Müller, I. M., and Schröder, H. C., 2003b. Molecular mechanism of spicule formation in the demosponge Suberites domuncula: Silicatein – myotrophin – collagen. In Müller, W. E. G. (ed.), Silicon Biomineralization, Berlin: Springer, pp. 195–222.CrossRefGoogle Scholar
  60. Müller, W. E. G., Rothenberger, M., Boreiko, A., Tremel, W., Reiber, A., and Schröder, H., 2005. Formation of siliceous spicules in the marine demosponge Suberites domuncula. Cell and Tissue Research, 321, 285–297.CrossRefGoogle Scholar
  61. Müller, W. E. G., Belikov, S. I., Tremel, W., Perry, C. C., Gieskes, W. W. C., Boreiko, A., and Schröder, H. C., 2006. Siliceous spicules in marine demosponges (example Suberites domuncula). Micron, 37, 107–120.CrossRefGoogle Scholar
  62. Müller, W. E. G., Boreiko, A., Wang, X., Belikov, S. I., Wiens, M., Grebenjuk, V. A., schloßmacher, U., and Schröder, H. C., 2007. Silicateins, the major biosilica forming enzymes present in demosponges: protein analysis and phylogenetic relationship. Gene, 395, 62–71.CrossRefGoogle Scholar
  63. Nichols, S., and Wörheide, G., 2005. Sponges: new views of old animals. Intergrative and Comparative Biology, 45, 333–334.CrossRefGoogle Scholar
  64. Okada, Y., 1928. On the development of a Hexactinellid sponge, Farrea sollasi. Journal of the Faculty of Science, Imperial University of Tokyo, Sect. 4, Zoology, 2, 1–27.Google Scholar
  65. Pisera, A., 2000. New species of lithistid sponges from the Paleogene of the Ukraine. Zoosystema, 22, 285–298.Google Scholar
  66. Pisera, A., 2003. Some aspects of silica deposition in lithistid demosponge desmas. Microscopy Research and Technique, 62, 312–326.CrossRefGoogle Scholar
  67. Reiswig, H. M., 1971. The axial symmetry of sponge spicules and its phylogenetic significance. Cahiers de Biologie Marine, 12, 505–514.Google Scholar
  68. Reiswig, H. M., 2002. Class Hexactinellida Schmidt, 1870. In Hooper, J. N. A., and van Soest, R. W. M. (eds.), Systema Porifera: A Guide to the Classification of Sponges. New York: Kluwer, pp. 1201–1202.CrossRefGoogle Scholar
  69. Reitner, J., 2004. Sponges – a geobiological approach. Integrative and Comparative Biology 43(6), 989.Google Scholar
  70. Reitner, J., and Mehl, D., 1996. Monophyly of the Porifera. Verhandlungen des naturwissenschaftlichen Vereins Hamburg, 36, 5–32.Google Scholar
  71. Rigby, J. K., Racki, G., and Wrzolek, T., 1981. Occurrence of dictylid hexactinellid sponges in the Upper Devonian of the Holy Cross Mts. Acta Geologica Polonica, 31, 163–168.Google Scholar
  72. Rigby, J. K., Pisera, A., Wrzolek, T., and Racki, G., 2001. Upper Devonian sponges from the Holy Cross Mountains, central Poland. Palaeontology, 44, 447–488.CrossRefGoogle Scholar
  73. Saito, Y., Isobe, T., and Senna, M., 1995. Incipient chemical reaction on the scratched silicon (1 1 1) surface with ethoxy and hydroxyl groups. Journal of Solid State Chemistry, 120(1), 96–100.CrossRefGoogle Scholar
  74. Sandford, F., 2003. Physical and chemical analysis of the siliceous skeletons in six sponges of the two groups (Demospongiae and Hexactinellida). Microscopical Research and Technology, 62, 336–355.CrossRefGoogle Scholar
  75. Schröder, H. C., Boreiko, A., Korzhev, M., Tahir, M. N., Tremel, W., Eckert, C., Ushijima, H., Müller, I. M., and Müller, W. E. G., 2006. Coexpression and functional interaction of silicatein with galectin: matrix-guided formation of siliceous spicules in the marine demosponge Suberites domuncula. Journal of Biological Chemistry, 281(17), 12001–12009.CrossRefGoogle Scholar
  76. Schulze, F. E., 1886. Über den Bau und das System der Hexactinelliden. Berlin: Royal Prussian Academy of Sciences, pp. 3–97.Google Scholar
  77. Schulze, F. E., 1904. Hexactinellida. Wissenschaftliche Ergebnisse der Deutschen Tiefsee-Expedition auf dem Dampfer “Valdivia” 1898–1899, 4, 1–266.Google Scholar
  78. Schwartz, K., 1973. A bound form of silicon in glucosaminoglycans and polyuronides. Proceedings of National Academy of Sciences of the United States of America, 70, 1608–1612.CrossRefGoogle Scholar
  79. Shimizu, K., and Morse, D. E., 2000. The biological and biomimetic synthesis of silica and other polysiloxanes. In Baeuerlein, E. (ed.), Biomineralization: From Biology to Biotechnology and Medical Application. Wiley, Weinheim, pp. 207–219.Google Scholar
  80. Shimizu, K., Cha, J. N., Stucky, G. D., and Morse, D. E., 1998. Silicatein a: cathepsin L-like protein in sponge biosilica. Proceedings of the National Academy of Sciences of the United States of America, 95, 6234–6238.CrossRefGoogle Scholar
  81. Simpson, T. L., 1984. The Cell Biology of Sponges. New York: Springer, pp. 1–660.CrossRefGoogle Scholar
  82. Simpson, T. L., 1989. Silification processes in sponges: Geodia asters and the problem of morphogenesis of spicule shape. In Crick, R. E. (ed.), Origin, Evolution and Modern Aspects of Biomineralization in Plants and Animals. New York: Kluwer, pp. 125–136.Google Scholar
  83. Simpson, T. L., 1990. Recent data on pattern of silicification and the origin of monaxons from tetraxons. In Rützler, K. (ed.), New Perspectives in Sponge Biology. 3rd International Conference on the Biology of Sponges, 1985. Washington: Smithsonian Institution Press, pp. 264–272.Google Scholar
  84. Skinner, H. C. W., 2005. Biominerals. Mineralogical Magazine, 69(5), 621–641.CrossRefGoogle Scholar
  85. Sollas, W. J., 1888. Report on Tetractinellida collected by H.M.S. challenger during the years 1873–1876. Report of the Scientific Results of the Voyage of the H.M.S. Challenger. Zoology, 5, 1–458.Google Scholar
  86. Tabachnick, K. R., 1991. Adaptation of the Hexactinellid sponges to deep-sea life. In Reitner, J., and Keupp, H. (eds.), Fossil and Recent Sponges. Berlin: Springer, pp. 378–386.CrossRefGoogle Scholar
  87. Tabachnick, K. R., 2002. Family Monorhaphididae Ijima, 1927. In Hooper, N. A. V., and Soest, R. W. M. (eds.), Systema Porifera: A Guide to the Classification of Sponges. New York: Kluwer, pp. 1264–1266.CrossRefGoogle Scholar
  88. Tabachnick, K. R., and Reiswig, H. M., 2002. Dictionary of Hexactinellida. In Hooper, J. N. A., and van Soest, R. W. M. (eds.), Systema Porifera: A Guide to the Classification of Sponges. New York: Kluwer, pp. 1224–1229.CrossRefGoogle Scholar
  89. Uriz, M.-J., 2003. Biology of silica deposition of sponges. Microscopical Research and Technology, Wiley-Liss. California, 62(4), 277–381.CrossRefGoogle Scholar
  90. Uriz, M.-J., 2006. Mineral skeletogenesis in sponges. Canadian Journal of Zoology, 84, 322–356.CrossRefGoogle Scholar
  91. Uriz, M.-J., Turon, X., Becero, M. A., and Agell, G., 2003. Siliceous spicules and skeletal frameworks in sponges: origin, diversità, ultrastructural patterns, and biological functions. Microscopical Research and Technology, 62, 279–299.CrossRefGoogle Scholar
  92. Vosmaer, G. C. J., and Wijsman, H. P., 1905. On the structure of some Siliceous Spicules of Sponges.I. The styli of Tethya lyncurium. Koninklijke Nederlandsche Akademie van Wetenschappen Proceedings, 8, 15–28.Google Scholar
  93. Weaver, J. C., and Morse, D. E., 2003. Molecular biology of demosponge axial filaments and their roles in biosilicification. Microscopical Research and Technology, 62(4), 356–367.CrossRefGoogle Scholar
  94. Weaver, J. C., Pietrasanta, I., Hedin, N., Chmelka, B. F., Hansma, P. K., and Morse, D. E., 2003. Nanostructural features of demosponge biosilica. Journal of Structural Biology, 144, 271–281.CrossRefGoogle Scholar
  95. Weiner, S., and Dove, P. M., 2003. An overview of biomineralization processes and the problem of the vital effect. Reviews in Mineralogy and Geochemistry, 54, 1–27.CrossRefGoogle Scholar
  96. Weissenfels, N., 1989. Biologie und Mikroskopische Anatomie der Süsswasserschwämme (Spongillidae). Stuttgart: Fischer.Google Scholar
  97. Weissenfels, N., and Landschoff, H. W., 1977. Bau und Funktion des Süsswasserschwamms Ephydatia fluviatilis L. (Porifera). IV. Die Entwicklung der monaxialen SiO2-Nadeln in Sandwich-Kulturen, Zoologische Jahrbiicher Abteilung für Anatomie und Ontogenese der Tiere, 98, 355–371.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Biominerals, Biocomposites & Biomimetics Group Institute of Bioanalytical ChemistryDresden University of TechnologyDresdenGermany