Encyclopedia of Geobiology

2011 Edition
| Editors: Joachim Reitner, Volker Thiel


  • Roman Aubrecht
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-9212-1_225


Cave deposits; Cave sinters


The word “speleothem” is from Greek and means “cave deposit.” According to its origin, this term can be used for any cave deposits, but it is used mostly for secondary mineral deposits formed (precipitated) in caves. In this entry, speleothem is understood as constructively formed, new cave material. Materials originated by destructive phenomena, such as erosion, weathering, etching, biocorrosion, or bioerosion are not subjects of this entry.

Biogenic and abiogenic speleothems

Most of the speleothems originate inorganically by precipitation of various minerals from solutions. The minerals are dissolved by undersaturated fluids and precipitate when the solutions become supersaturated, e.g., by evaporation, outgassing, or pH changes. Mineralogical compositions of speleothems vary depending on the environment in which the caves are formed. The most common speleothem-forming mineral is calcite (as most of the caves are formed of limestones),...


Manganese Oxide Biological Mediation Cave Environment Cave Deposit Cave Mineral 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Aubrecht, R., Brewer-Carías, Ch., Šmída, B., Audy, M., and Kováčik, Ľ., 2008. Anatomy of biologically mediated opal speleothems in the world’s largest sandstone cave Cueva Charles Brewer, Chimantá Plateau, Venezuela. Sedimentary Geology, 203(3–4), 181–195.CrossRefGoogle Scholar
  2. Barton, H. A., 2006. Introduction to cave microbiology: a review for the non-specialists. Journal of Cave and Karst Studies, 68(2), 43–64.Google Scholar
  3. Barton, H. A., Spear, J. R., and Pace, N. R., 2001. Microbial life in the underworld: biogenicity in secondary mineral formations. Geomicrobiology Journal, 18, 359–368.CrossRefGoogle Scholar
  4. Bourrelly, P., and Depuy, P., 1973. Quelques stations françaises de Geitleria calcarea, Cyanophycée cavernicole. Schweizerische Zeitschrift für Hydrologie, 35, 136–140.Google Scholar
  5. Castenholz, R. W., 2001. Phyllum BX. Cyanobacteria. Oxygenic photosynthetic bacteria. In Boone, D. R., and Castenholz, R. W. (eds.), Bergey’s Manual of Systematic Bacteriology, The Archea and the deeply branching and phototrophic Bacteria, 2nd edn. New York: Springer, Vol. 1, pp. 473–599.CrossRefGoogle Scholar
  6. Friedman, I., 1955. Geitleria calcarea n.gen. et n.sp., a new atmophytic lime-encrusting blue-green alga. Botaniska Noticer, 108, 439–445.Google Scholar
  7. Gradziński, M., and Szulc, J., 1997. Recent microbial speleothems (“moonmilk” deposits). 3rd IFAA Regional Symposium & IGCP 380 International Meeting Guidebook, Cracow, Sept. 14–20, 1997, pp. 38–39.Google Scholar
  8. Gradziński, M., Banaś, M., and Uchman, A., 1995. Biogenic origin of manganese flowstones from Jaskinia Czarna Cave, Tatra Mts., Western Carpathians. Annales Societatis Geologorum Poloniae, 65, 19–27.Google Scholar
  9. Gradziński, M., Szulc, J., and Smyk, B., 1997. Microbial agents of moonmilk calcification. In Jeannin, P.-Y. (ed.), Proceedings of the 12th International Congress of Speleology. Basel, Switzerland: IUS, Vol. 1, pp. 275–278.Google Scholar
  10. Hill, C. A., and Forti, P., 1986. Cave Minerals of the World. Huntsville: National Speleological Society, 238 pp.Google Scholar
  11. Kashima, N., and Ogawa, T., 1995. A note on biogenic effect of coralloid speleothems in Round Mountain Lava Cave, Oregon, U.S.A. Journal of Speleological Society of Japan, 19, 8–12.Google Scholar
  12. Kashima, N., Teruo, I., and Kinoshita, N., 1987. Diatom, contributors of coralloid speleothems, from Togawa-Sakaidani-do Cave in Miyasaaki prefecture, Central Kyushu, Japan. International Journal of Speleology, 16, 95–100.CrossRefGoogle Scholar
  13. Konhauser, K., 2007. Introduction to Geomicrobiology. Malden: Blackwell Publishing, 425 pp.Google Scholar
  14. Reitner, J., 1993. Modern cryptic microbialite/metazoan facies from Lizard Island (Great Barrier Reef, Australia). Formation and concepts. Facies, 29, 3–40.CrossRefGoogle Scholar
  15. Schlögl, J., Michalík, J., Zágoršek, K., and Atrops, F., 2008. Early Tithonian serpulid-dominated cavity-dwelling fauna, and the recruitment patter of the serpulid larvae. Journal of Paleontology, 82(2), 382–392.CrossRefGoogle Scholar
  16. Taboroši, D., 2006. Biologically influenced carbonate speleothems. In Harmon, R. S., and Wicks, C. M. (eds.), Perpectives on Karst Geomorphology, Hydrology and Geochemistry. GSA Special Paper 404, pp. 307–317.Google Scholar
  17. Vinogradova, O. N., Kovalenko, O. V., Wasser, S. P., Nevo, E., and Weinstein-Evron, M., 1998. Species diversity gradient to darkness stress in blue-green algae/cyanobacteria: a microscale test in a prehistoric cave, Mount Carmel, Israel. Israel Journal of Plant Sciences, 48, 229–238.CrossRefGoogle Scholar
  18. Whitton, B. A., 1987. The biology of Rivulariaceae. In Fay, P., and van Baalen, C. (eds.), The Cyanobacteria – A Comparative Review. Amsterdam: Elsevier, pp. 513–534.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Roman Aubrecht
    • 1
  1. 1.Department of Geology and Paleontology Faculty of Natural SciencesComenius UniversityBratislavaSlovakia