Encyclopedia of Geobiology

2011 Edition
| Editors: Joachim Reitner, Volker Thiel


  • Matthias Labrenz
  • Gregory K. Druschel
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-9212-1_214


Spelter (nonscientific)


Physicochemical characteristics

Zinc (Zn) is the 23rd most abundant element in the Earth’s crust, and exists as a blue-whitish metal relatively weak with a melting point of 419.5°C and a boiling point of 907°C, with a density of 7.133 g/cm3 (Henkin, 1984). Zn consists of a mixture of the five stable isotopes 64Zn (48.6%, atomic mass 63.9), 66Zn (27.9%, atomic mass 65.9), 67Zn (4.1%, atomic mass 66.9), 68Zn (18.8%, atomic mass 67.9), and 70Zn (0.6%, atomic mass 69.9) (Coplen et al., 2002). Moreover, six synthetic radioactive isotopes are known: 62Zn, 63Zn, 65Zn, 69Zn, 72Zn, and 73Zn. The atomic number is 30. Zinc metal is highly reactive and produces various different salts, but it is only stable in water as the Zn2+ ion and associated complexes and minerals. Its sulfates and chlorides are water-soluble and its sulfides, oxides, carbonates, phosphates, silicates, as well as organic complexes are water-insoluble (Henkin, 1984). Zinc, like many...


Sulfate Reduction Acid Mine Drainage Thermochemical Sulfate Reduction Microbial Sulfate Reduction Acid Mine Drainage Water 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Bastin, E. S., 1926. A hypothesis of bacterial influence in the genesis of certain sulphide deposits. Journal of Geology, 34, 773–792.CrossRefGoogle Scholar
  2. Bechtel, A., Pervaz, M., and Puttmann, W., 1998. Role of organic matter and sulphate-reducing bacteria for metal sulphide precipitation in the Bahloul Formation at the Bou Grine Zn/Pb deposit (Tunisia). Chemical Geology, 144, 1–21.CrossRefGoogle Scholar
  3. Bechtel, A., Savin, S. M., and Hoernes, S., 1999. Oxygen and hydrogen isotopic composition of clay minerals of the Bahloul Formation in the region of the Bou Grine zinc–lead ore deposit (Tunisia): evidence for fluid–rock interaction in the vicinity of salt dome cap rock. Chemical Geology, 156, 191–207.CrossRefGoogle Scholar
  4. Blencowe, D. K., and Morby, A. P., 2003. Zn(II) metabolism in prokaryotes. FEMS Microbiology Reviews, 27, 291–311.CrossRefGoogle Scholar
  5. Cohen, D., 2007. Earth’s natural wealth: an audit. New Scientist, May 23, 2007, 34–41.Google Scholar
  6. Coplen, T. B., Böhlke, J. K., De Bièvre, P., Ding, T., Holden, N. E., Hopple, J. A., Krouse, H. R., Lamberty, A., Peiser, H. S., Révész, K., Rieder, S. E., Rosman, K. J. R., Roth, E., Taylor, P. D. P., Vocke, R. D., and Xiao, Y. K., 2002. Isotope-abundance variations of selected elements (IUPAC Technical Report). Pure and Applied Chemistry, 74, 1987–2017.CrossRefGoogle Scholar
  7. Druschel, G. K., Labrenz, M., Thomsen-Ebert, T., Fowle, D. A., and Banfield, J. F., 2002. Biogenic precipitation of monomineralic nanocrystalline sulfides: implications of observed and modeled processes to ore deposition. Economic Geology, 97, 1319–1329.CrossRefGoogle Scholar
  8. Druschel, G. K., Baker, B. J., Gihring, T. H., and Banfield, J. F., 2004. Acid mine drainage biogeochemistry at Iron Mountain, California. Geochemical Transactions, 5, 13–32.CrossRefGoogle Scholar
  9. Goldhaber, M. B., and Orr, W. L., 1995. Kinetic controls on the thermochemical sulfate reduction as a source of sedimentary H2S. In Vairavamurthy, M. A., and Schoonen, M. A. A. (eds.), Geochemical Transformations of Sedimentary Sulfur. ACS Symposium Series 612. Washington, DC: American Chemical Society, pp. 412–425.CrossRefGoogle Scholar
  10. Hanbo, Z., Changqun, D., Qiyong, S., Weimin, R., Tao, S., Lizhong, C., Zhiwei, Z., and Bin, H., 2004. Genetic and physiological diversity of phylogenetically and geographically distinct groups of Arthrobacter isolated from lead–zinc mine tailings. FEMS Microbiology Ecology, 49, 333–341.CrossRefGoogle Scholar
  11. Henkin, R. J., 1984. Zink. In Merian, E. (ed.), in Gemeinschaft mit Geldmacher-v. Mallinckrodt, Machata, G., Nürnberg, H. W., Schlipköter, H. W., Stumm, W., Metalle in der Umwelt: Verteilung, Analytik, und biologische Relevanz. Weinheim: Verlag Chemie, pp. 597–629.Google Scholar
  12. Hu, M. A., Disnar, J. R., Barbanson, L., and Suarez-Ruiz, I., 1998. Processus d’altération thermique, physico-chimique et biologique de constituants organiques et genèse d’une minéralisation sulfurée: le gîte Zn–Pb de La Florida (Cantabria, Espagne). Canadian Journal of Earth Sciences, 35, 936–950.CrossRefGoogle Scholar
  13. Jönsson, J., Jönsson, J., and Lövgren, L., 2006. Precipitation of secondary Fe(III) minerals from acid mine drainage. Applied Geochemistry, 21, 437–445.CrossRefGoogle Scholar
  14. Kaiser-Rohrmeier, M., Handler, R., Quadt, v. A., and Heinrich, C., 2004. Hydrothermal Pb–Zn ore formation in the Central Rhodopian Dome, south Bulgaria: review and new time constraints from Ar–Ar geochronology. Schweizerische Mineralogische und Petrographische Mitteilungen, 84, 37–58.Google Scholar
  15. Kotrba, P., and Ruml, T., 2000. Bioremediation of heavy metal pollution exploiting constituents, metabolites and metabolic pathways of livings. A review. Collection of Czechoslovak Chemical Communications, 65, 1205–1247.CrossRefGoogle Scholar
  16. Labrenz, M., and Banfield, J. F., 2004. Sulfate-reducing bacteria dominated biofilms that precipitate ZnS in a subsurface circum-neutral pH mine drainage system. Microbial Ecology, 47, 205–217.Google Scholar
  17. Labrenz, M., Druschel, G. K., Thomsen-Ebert, T., Gilbert, B., Welch, S. A., Kemner, K. M., Logan, G. A., Summons, R. E., De Stasio, G., Bond, P. L., Lai, B., Kelly, S. D., and Banfield, J. F., 2000. Sphalerite (ZnS) deposits forming in natural biofilms of sulfate-reducing bacteria. Science, 290, 1744–1747.CrossRefGoogle Scholar
  18. Ledin, M., and Pedersen, K., 1996. The environmental impact of mine wastes—roles of microorganisms and their significance in treatment of mine wastes. Earth-Science Review, 41, 67–108.CrossRefGoogle Scholar
  19. Luther, G. W., Theberge, S. M., and Rickard, D. T., 1999. Evidence for aqueous clusters as intermediates during zinc-sulfide formation. Geochimica et Cosmochimica Acta, 63, 3159−3169.CrossRefGoogle Scholar
  20. Mertens, J., Springael, D., De Troyer, I., Cheyns, K., Wattiau, P., and Smolders, E., 2006. Long-term exposure to elevated zinc concentrations induced structural changes and zinc tolerance of the nitrifying community in soil. Environmental Microbiology, 8, 2170–2178.CrossRefGoogle Scholar
  21. Moreau, J. W., Webb, R. I., and Banfield, J. F., 2004. Ultrastructure, aggregation-state, and crystal growth of biogenic nanocrystalline sphalerite and wurtzite. American Mineralogist, 89, 950–960.Google Scholar
  22. Moreau, J. W., Weber, P. K., Martin, M. C., Gilbert, B., Hutcheon, I. D., and Banfield, J. F., 2007. Extracellular proteins limit the dispersal of biogenic nanoparticles. Science, 316, 1600.CrossRefGoogle Scholar
  23. Nordstrom, D. K., 2000. Advances in the hydrogeochemistry and microbiology of acid mine waters. International Geology Review, 42, 499–515.CrossRefGoogle Scholar
  24. Ohmoto, H., and Goldhaber, M. B., 1997. Sulfur and carbon isotopes. In Barnes, H. L. (ed.), Geochemistry of Hydrothermal Ore Deposits, 3rd edn. New York: Wiley, pp. 517–611.Google Scholar
  25. Rimstidt, J. D., Cermak, J. A., and Gagen, P. M., 1994. Rates of reaction of galena, sphalerite, chalcopyrite, and arsenopyrite with Fe(III) in acidic solutions. In Alpers, C. N., and Blowes, D. W. (eds.), Environmental Geochemistry of Sulfide Oxidation. ACS Symposium Series 550. Washington DC: American Chemical Society, pp. 2–13.CrossRefGoogle Scholar
  26. Rozan, T. F., Lassman, M. E., Ridge, D. P., and Luther, G. W., 2000. Evidence for iron, copper, and zinc complexation as multinuclear sulphide clusters in oxic rivers. Nature, 406, 879–882.CrossRefGoogle Scholar
  27. Sani, R. K., Peyton, B. M., and Brown, L. T., 2001. Copper-induced inhibition of growth of Desulfovibrio desulfuricans G20: assessment of its toxicity and correlation with those of zinc and lead. Applied and Environmental Microbiology, 67, 4765–4772.CrossRefGoogle Scholar
  28. Siebenthal, C. E., 1915. Origin of the lead and zinc deposits of the Joplin region.  U.S. Geological Survey Bulletin, 606, 283.Google Scholar
  29. Smolders, E., Buekers, J., Oliver, I., and McLaughlin, M. J., 2004. Soil properties affecting microbial toxicity of zinc in laboratory-spiked and field-contaminated soils. Environmental Toxicology and Chemistry, 23, 2633–2640.CrossRefGoogle Scholar
  30. Spangenberg, J. E., and Herlec, U., 2006. Hydrocarbon biomarkers in the Topla-Mezica zinc–lead deposits, northern Karavanke/Drau Range, Slovenia: paleoenvironment at the site of ore formation. Economic Geology, 101, 997–1021.CrossRefGoogle Scholar
  31. Tarkian, M., and Breskovska, V., 1989. Greenockite from the Madjarovo Pb–Zn ore district, Eastern Rhodope, Bulgaria. Mineralogy and Petrology, 40, 137–144.CrossRefGoogle Scholar
  32. Thom, J., and Anderson, G. M., 2008. The role of thermochemical sulphate reduction in the origin of Mississippi Valley-type deposits. I. Experimental results. Geofluids, 8, 16–26.Google Scholar
  33. Trudinger, P. A., Lambert, I. B., and Skyring, G. W., 1972. Biogenic sulfide ores: a feasibility study. Economic Geology, 67, 1114–1127.CrossRefGoogle Scholar
  34. USGS (United States Geological Survey), 2008. Zinc statistics and information. Available from: http://minerals.usgs.gov/minerals/pubs/commodity/zinc/.
  35. White, C., Sharman, A. K., and Gadd, G. M., 1998. An integrated microbial process for the bioremediation of soil contaminated with toxic metals. Nature Biotechnology, 16, 572–575.CrossRefGoogle Scholar
  36. Zhang, H., Huang, F., Gilbert, B., and Banfield, J. F., 2003. Molecular dynamics simulations, thermodynamic analysis and experimental study of phase stability of zinc sulphide nanoparticles. Journal of Physical Chemistry B, 107, 13051−13060.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Matthias Labrenz
    • 1
  • Gregory K. Druschel
    • 2
  1. 1.IOW-Leibniz Institute for Baltic Sea Research Section BiologyRostock-WarnemuendeGermany
  2. 2.Department of GeologyUniversity of VermontBurlington, VTUSA