Skip to main content

Sulfur Cycle

  • Reference work entry
Encyclopedia of Geobiology

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Synonyms

Biogeochemical sulfur cycle; Sulfate reduction and sulfide oxidation; Transformation of sulfur compounds

Definition

Sulfur. Chemical element that is one of the constituents of the Earth’s compartments and living organisms.  While the average sulfur content of the whole Earth is about 2%, the crust contains only about 0.07% sulfur (Brimblecombe, 2003).

Sulfur cycle. Biogeochemical system of biotic and abiotic transformations of inorganic and organic sulfur-bearing components, in and between, the lithosphere, hydrosphere, atmosphere, and biosphere. Sulfur initially enters the biogeochemical cycle via volcanic activity and continental erosion. Today, the modern sulfur cycle is influenced by human activity. The Earth sulfur reservoir is assumed to have been essentially constant through time (Garrels and Lerman, 1984).

Assimilative sulfate reduction. Sulfate (SO4 2−) is reduced to organic R-SH groups by plants, algae, and fungi.

Dissimilative sulfur and sulfate reduction.Hydrogen...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Berner, R. A., 1987. Models for carbon and sulfur cycles and atmospheric oxygen: application to Paleozoic geologic history. American Journal of Sciences, 287, 177.

    Google Scholar 

  • Böttcher, M. E., 1999. The stable isotope geochemistry of the sulfur and carbon cycles in a modern karst envrionment. Isotopes in Environment and Health Studies, 35, 39.

    Article  Google Scholar 

  • Böttcher, M. E., 2010. Isotopes (sulfur). In Reitner, J., and Thiel, V. (eds.), Encyclopaedia of Geobiology. Berlin: Springer, in press.

    Google Scholar 

  • Böttcher, M. E., and Thamdrup, B., 2001. Anaerobic oxidation and stable isotope fractionation associated with bacterial sulfur disproportionation in the presence of MnO2. Geochimica et Cosmochimica Acta, 65, 1573.

    Article  Google Scholar 

  • Brimblecombe, P., 2003. The global sulfur cycle. In Schlesinger, W. (ed.), Treatise on Geochemistry, Biogeochemistry. Amsterdam: Elsevier, Vol. 8, pp. 645.

    Chapter  Google Scholar 

  • Canfield, D. E., 2004. The evolution of the Earth surface sulfur cycle. American Journal of Sciences, 304, 839.

    Google Scholar 

  • Canfield, D. E., and Raiswell, R., 1999. The evolution of the sulfur cycle. American Journal of Science, 290, 697.

    Article  Google Scholar 

  • Canfield, D. E., and Teske, A., 1996. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulfur isotope studies. Nature, 328, 127.

    Article  Google Scholar 

  • Clark, I. D., and Fritz, P., 1997. Environmental Isotopes in Hydrogeology. Boca Raton: Lewis Publishers.

    Google Scholar 

  • Crutzen, P. J., 2006. Albedo enhancement by stratospheric sulfur injections: a contribution to resolve a policy dilemma? Climate Change, 77, 211.

    Article  Google Scholar 

  • Farquhar, J., Bao, H., and Thiemens, M., 2000. Atmospheric influence of Earth’s earliest sulphur cycle. Science, 4, 756.

    Article  Google Scholar 

  • Finster, K., 2008. Microbiological disproportionation of inorganic sulfur compounds. Journal of Sulfur Chemistry, 29, 281.

    Article  Google Scholar 

  • Garrels, R. M., and Lerman, A., 1984. Coupling of the sedimentary sulfur and carbon cycles – an improved model. American Journal of Sciences, 284, 989.

    Google Scholar 

  • Holmer, M., and Storkholm, P., 2001. Sulfate reduction and sulphur cycling in lake sediments: a review. Freshwater Biology, 46, 431.

    Article  Google Scholar 

  • Jørgensen, B. B., and D'Hondt, S., 2006. A starving majority deep beneath the seafloor. Science, 314, 932.

    Article  Google Scholar 

  • Jørgensen, B. B., and Kasten, S., 2006. Sulfur cycling and methane oxidation. In Schulz, H. D., and Zabel, M. (eds.), Marine Geochemistry. Berlin: Springer, p. 271.

    Chapter  Google Scholar 

  • Jørgensen, B. B., and Nelson, D. C., 2004. Sulfide oxidation in marine sediments: geochemistry meets microbiology. In Ahmend, J. P., Edwards, K. J., and Lyons, T. W. (eds.), Sulfur Biogeochemistry – Past and Present. Geological Society of America Special Paper, p. 379.

    Google Scholar 

  • Mitchell, M. J., David, M. B., and Harrison, R. B., 1992. Sulphur dynamics of forest ecosystems. In Howarth, R. W., Stewart, J. W. B., and Ivanov, M. V. (eds.), Sulphur Cycling on the Continents: Wetlands, Terrestrial Ecosystems and Associated Water Bodies. John Wiley & Sons, New York, p. 215.

    Google Scholar 

  • Niles, D. W., 1872. Goethe’s Elective Affinities (with an introduction by Victoria C. Woodhall). Boston: D. W. Niles, p. 41.

    Google Scholar 

  • Ohmoto, H., 1992. Biogeochemistry of sulfur and the mechanisms of sulfide-sulfate mineralization in Archean oceans. In Schidlowski, M., Golubic, S., Kimberley, M. M., McKirdy, D. M., and Trudinger, P.A. (eds.), Early Organic Evolution: Implications for Mineral & Energy Resources, Berlin: Springer, p. 378.

    Chapter  Google Scholar 

  • Rabus, R., Hansen, T., and Widdel, F., 2001. Dissimilatory sulfate- and sulfur-reducing prokaryotes. In Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., and Stackebrandt, E. (eds.) The Procaryotes: An evolving electronic resource for the microbiological community. Heidelberg, Springer Science Online. Available from: www.prokaryotes.com.

  • Rickard, D., and Luther III, G. W., 2007. Chemistry of iron sulfides. Chemical Reviews, 107, 514.

    Article  Google Scholar 

  • Rickard, D., and Morse, J. W., 2005. Acid volatile sulfide (AVS). Marine Chemistry, 97, 141.

    Article  Google Scholar 

  • Sinninghe Damsté, J. S., and de Leeuw, J. W., 1990. Analysis, structure and geochemical significance of organically-bound sulphur in the geosphere: state of the art and future research. Organic Geochemistry, 16, 1077.

    Article  Google Scholar 

  • Skyring, G. W., 1987. Sulfate reduction in coastal ecosystems. Geomicrobiology Journal, 5, 295.

    Article  Google Scholar 

  • Smith, J. W., 2000. Isotopic fractionations accompanying sulfur hydrolysis. Geochemical Journal, 34, 95.

    Article  Google Scholar 

  • Wortmann, U. G., Chernyavsky, B., Bernasconi, S. M., Brunner, B., Böttcher, M. E., and Swart, P. K., 2007. Oxygen isotope biogeochemistry of pore water sulfate in the deep biosphere: dominance of isotope exchange reactions with ambient water during microbial sulfate reduction (ODP Site 1130). Geochimica et Cosmochimica Acta, 71, 4221.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Böttcher, M.E. (2011). Sulfur Cycle. In: Reitner, J., Thiel, V. (eds) Encyclopedia of Geobiology. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9212-1_200

Download citation

Publish with us

Policies and ethics