Encyclopedia of Geobiology

2011 Edition
| Editors: Joachim Reitner, Volker Thiel

Sulfur Cycle

  • Michael E. Böttcher
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-9212-1_200

Synonyms

Biogeochemical sulfur cycle; Sulfate reduction and sulfide oxidation; Transformation of sulfur compounds

Definition

Sulfur. Chemical element that is one of the constituents of the Earth’s compartments and living organisms.  While the average sulfur content of the whole Earth is about 2%, the crust contains only about 0.07% sulfur (Brimblecombe, 2003).

Sulfur cycle. Biogeochemical system of biotic and abiotic transformations of inorganic and organic sulfur-bearing components, in and between, the lithosphere, hydrosphere, atmosphere, and biosphere. Sulfur initially enters the biogeochemical cycle via volcanic activity and continental erosion. Today, the modern sulfur cycle is influenced by human activity. The Earth sulfur reservoir is assumed to have been essentially constant through time (Garrels and Lerman, 1984).

Assimilative sulfate reduction. Sulfate (SO42−) is reduced to organic R-SH groups by plants, algae, and fungi.

Dissimilative sulfur and sulfate reduction.Hydrogen...
This is a preview of subscription content, log in to check access

Bibliography

  1. Berner, R. A., 1987. Models for carbon and sulfur cycles and atmospheric oxygen: application to Paleozoic geologic history. American Journal of Sciences, 287, 177.Google Scholar
  2. Böttcher, M. E., 1999. The stable isotope geochemistry of the sulfur and carbon cycles in a modern karst envrionment. Isotopes in Environment and Health Studies, 35, 39.Google Scholar
  3. Böttcher, M. E., 2010. Isotopes (sulfur). In Reitner, J., and Thiel, V. (eds.), Encyclopaedia of Geobiology. Berlin: Springer, in press.Google Scholar
  4. Böttcher, M. E., and Thamdrup, B., 2001. Anaerobic oxidation and stable isotope fractionation associated with bacterial sulfur disproportionation in the presence of MnO2. Geochimica et Cosmochimica Acta, 65, 1573.Google Scholar
  5. Brimblecombe, P., 2003. The global sulfur cycle. In Schlesinger, W. (ed.), Treatise on Geochemistry, Biogeochemistry. Amsterdam: Elsevier, Vol. 8, pp. 645.Google Scholar
  6. Canfield, D. E., 2004. The evolution of the Earth surface sulfur cycle. American Journal of Sciences, 304, 839.Google Scholar
  7. Canfield, D. E., and Raiswell, R., 1999. The evolution of the sulfur cycle. American Journal of Science, 290, 697.Google Scholar
  8. Canfield, D. E., and Teske, A., 1996. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulfur isotope studies. Nature, 328, 127.Google Scholar
  9. Clark, I. D., and Fritz, P., 1997. Environmental Isotopes in Hydrogeology. Boca Raton: Lewis Publishers.Google Scholar
  10. Crutzen, P. J., 2006. Albedo enhancement by stratospheric sulfur injections: a contribution to resolve a policy dilemma? Climate Change, 77, 211.Google Scholar
  11. Farquhar, J., Bao, H., and Thiemens, M., 2000. Atmospheric influence of Earth’s earliest sulphur cycle. Science, 4, 756.Google Scholar
  12. Finster, K., 2008. Microbiological disproportionation of inorganic sulfur compounds. Journal of Sulfur Chemistry, 29, 281.Google Scholar
  13. Garrels, R. M., and Lerman, A., 1984. Coupling of the sedimentary sulfur and carbon cycles – an improved model. American Journal of Sciences, 284, 989.Google Scholar
  14. Holmer, M., and Storkholm, P., 2001. Sulfate reduction and sulphur cycling in lake sediments: a review. Freshwater Biology, 46, 431.Google Scholar
  15. Jørgensen, B. B., and D'Hondt, S., 2006. A starving majority deep beneath the seafloor. Science, 314, 932.Google Scholar
  16. Jørgensen, B. B., and Kasten, S., 2006. Sulfur cycling and methane oxidation. In Schulz, H. D., and Zabel, M. (eds.), Marine Geochemistry. Berlin: Springer, p. 271.Google Scholar
  17. Jørgensen, B. B., and Nelson, D. C., 2004. Sulfide oxidation in marine sediments: geochemistry meets microbiology. In Ahmend, J. P., Edwards, K. J., and Lyons, T. W. (eds.), Sulfur Biogeochemistry – Past and Present. Geological Society of America Special Paper, p. 379.Google Scholar
  18. Mitchell, M. J., David, M. B., and Harrison, R. B., 1992. Sulphur dynamics of forest ecosystems. In Howarth, R. W., Stewart, J. W. B., and Ivanov, M. V. (eds.), Sulphur Cycling on the Continents: Wetlands, Terrestrial Ecosystems and Associated Water Bodies. John Wiley & Sons, New York, p. 215.Google Scholar
  19. Niles, D. W., 1872. Goethe’s Elective Affinities (with an introduction by Victoria C. Woodhall). Boston: D. W. Niles, p. 41.Google Scholar
  20. Ohmoto, H., 1992. Biogeochemistry of sulfur and the mechanisms of sulfide-sulfate mineralization in Archean oceans. In Schidlowski, M., Golubic, S., Kimberley, M. M., McKirdy, D. M., and Trudinger, P.A. (eds.), Early Organic Evolution: Implications for Mineral & Energy Resources, Berlin: Springer, p. 378.Google Scholar
  21. Rabus, R., Hansen, T., and Widdel, F., 2001. Dissimilatory sulfate- and sulfur-reducing prokaryotes. In Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., and Stackebrandt, E. (eds.) The Procaryotes: An evolving electronic resource for the microbiological community. Heidelberg, Springer Science Online. Available from: www.prokaryotes.com.
  22. Rickard, D., and Luther III, G. W., 2007. Chemistry of iron sulfides. Chemical Reviews, 107, 514.Google Scholar
  23. Rickard, D., and Morse, J. W., 2005. Acid volatile sulfide (AVS). Marine Chemistry, 97, 141.Google Scholar
  24. Sinninghe Damsté, J. S., and de Leeuw, J. W., 1990. Analysis, structure and geochemical significance of organically-bound sulphur in the geosphere: state of the art and future research. Organic Geochemistry, 16, 1077.Google Scholar
  25. Skyring, G. W., 1987. Sulfate reduction in coastal ecosystems. Geomicrobiology Journal, 5, 295.Google Scholar
  26. Smith, J. W., 2000. Isotopic fractionations accompanying sulfur hydrolysis. Geochemical Journal, 34, 95.Google Scholar
  27. Wortmann, U. G., Chernyavsky, B., Bernasconi, S. M., Brunner, B., Böttcher, M. E., and Swart, P. K., 2007. Oxygen isotope biogeochemistry of pore water sulfate in the deep biosphere: dominance of isotope exchange reactions with ambient water during microbial sulfate reduction (ODP Site 1130). Geochimica et Cosmochimica Acta, 71, 4221.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Michael E. Böttcher
    • 1
  1. 1.Geochemistry & Stable Isotope Geochemistry Marine Geology SectionLeibniz Institute for Baltic Sea ResearchWarnemündeGermany