Skip to main content

Sulfide Mineral Oxidation

  • Reference work entry
Encyclopedia of Geobiology

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Synonyms

Sulfide-mineral weathering; Sulfide-ore oxidation

Definition

Sulfide mineral. A metal-sulfide compound, such as pyrite (FeS2), which forms at high temperature (>50°C) in well-crystallized veins or masses and at low temperatures (<50°C) in poorly crystalline and fine-grained particles.

Oxidation. The chemical process of reacting with oxygen. More generally, the chemical process of removing electrons from an atom or group of atoms.

Introduction

Metal-sulfide minerals are valuable as ores for metals that have a wide variety of uses from jewelry to components in vehicles and electronic equipment. They are found primarily in hydrothermal mineral deposits that occur in numerous geologic environments. The most common sulfide mineral is pyrite; other important sulfide ore minerals include chalcopyrite (copper ore), molybdenite (molybdenum ore), sphalerite (zinc ore), galena (lead ore), and cinnabar (mercury ore). When these minerals are exposed to weathering at the Earth’s surface,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Bond, P. L., Druschel, G. K., and Banfield, J. F., 2000. Comparison of acid mine drainage microbial communities in physically and geochemically distinct ecosystems. Applied and Environmental Microbiology, 66, 4962–4971.

    Article  Google Scholar 

  • Colmer, A. R., and Hinkle, M. E., 1947. The role of microorganisms in acid mine drainage. Science, 106, 253–256.

    Article  Google Scholar 

  • Edwards, K. J., Bond, P. L., Gihring, T. M., and Banfield, J. F., 2000. An archaeal Fe-oxidizing extreme acidophile important in acid mine drainage. Science, 287, 1796–1799.

    Article  Google Scholar 

  • Ehrlich, H. L., 2002. Geomicrobiology, 4th edn. New York: Marcel Dekker.

    Book  Google Scholar 

  • Golyshina, O. V., Pivovarova, T. A., Karavaiko, G. I., Kondrat’eva, T. F., Moore, R. B., Abraham, W. R., Lunsdorf, H., Timmis, K. N., Yakimov, M. M., and Golyshin, P. N., 2000. Ferroplasma acidiphilum, gen. nov., sp. Nov., an acidophilic, autotrophic, ferrous-Fe-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam., comprising a distinct lineage of the Archaea. International Journal of Systematic and Evolutionary Biology, 50, 997–1006.

    Article  Google Scholar 

  • Nordstrom, D. K., 2009. Acid rock drainage and climate change. Journal of Geochemical Exploration, 100, 97–104.

    Article  Google Scholar 

  • Nordstrom, D. K., and Alpers, C. N., 1999. Geochemistry of acid mine waters. In Plumlee, G. S., and Logsdon, M. J. (eds.), The Environmental Geochemistry of Mineral Deposits. Part A. Processes, Methods and Health Issues, Reviews in Economic Geology, Littleton, CO: Society of Economic Geology, Vol. 6A, pp. 133–160.

    Google Scholar 

  • Nordstrom, D. K., and Southam, G., 1997. Geomicrobiology of sulfide mineral oxidation. In Banfield, J. F., and Nealson, K. H. (eds.), Geomicrobiology: Interactions between Microbes and Minerals, Reviews in Mineralogy 35. Washington, DC: Mineralogical Society of America, pp. 361–390.

    Google Scholar 

  • Nordstrom, D. K., Alpers, C. N., Ptacek, C. J., and Blowes, D. W., 2000. Negative pH and extremely acidi waters from Iron Mountain, California. Environmental Science and Technology, 34, 254–258.

    Article  Google Scholar 

  • Norris, P. R., 1990. Acidophilic bacteria and their activity in sulfide mineral oxidation. In Ehrlich, H. L., and Brierley, C. L. (eds.), Microbial Mineral Recovery. New York: McGraw-Hill, pp. 3–27.

    Google Scholar 

  • Rawlings, D. E., Tributsch, H., and Hansford, G. S., 1999. Reasons why ‘Leptospirillum’-like species rather than Thiobacillus ferrooxidans are the dominant Fe-oxidizing bacteria in many commercial processes for biooxidation of pyrite and related ores. Microbiology, 145, 5–13.

    Article  Google Scholar 

  • Rudolfs, A., and Helbronner, A., 1922. Oxidation of zinc sulfide by microorganisms. Soil Science, 14, 459–464.

    Article  Google Scholar 

  • Winogradsky, S. N., 1888. Ãœber Eisenbakterien. Botanische Zeitung, 46, 261–276.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Nordstrom, D.K. (2011). Sulfide Mineral Oxidation. In: Reitner, J., Thiel, V. (eds) Encyclopedia of Geobiology. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9212-1_198

Download citation

Publish with us

Policies and ethics