Skip to main content

Microbialites, Modern

  • Reference work entry
Encyclopedia of Geobiology

Synonyms

“Cryptalgal sedimentary rock” (Aitken, 1967); Microbolite (Riding, 1991)

Definition

Microbialite: “Organosedimentary deposits that have accreted as a result of a benthic microbial community trapping and binding sediment and/or forming the locus of mineral precipitation” (Burne and Moore, 1987), or “Benthic microbial deposits” (Riding, 1991).

Introduction

In this encyclopedia, microbialite is discussed under two chapters: (1) modern and (2) fossil. This part discusses modern microbialites, with emphasis on processes of formation. The fossil extension and classification of microbial deposits (fossil forms being more diverse) are treated in the “fossil microbialite” section of the encyclopedia (see Chapter Microbialites, Stromatolites, and Thrombolites ). Microbialites are composed of trapped, bound, and/or precipitated sediment, and exhibit a range of mineralogies (Figure 1). This chapter focuses on carbonate microbialites, which are the most widespread and the most studied.

Micr...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Aitken, J. D., 1967. Classification and environmental significance of cryptalgal limestones and dolomites, with illustrations from the Cambrian and Ordovician of southwestern Alberta. Journal of Sedimentary Petrology, 37, 1163–1178.

    Article  Google Scholar 

  • Altermann, W., Kazmierczak, J., Oren, A., and Wright, D. T., 2006. Cyanobacterial calcification and its rock-building potential during 3.5 billion years of Earth history. Geobiology, 4, 147–166.

    Article  Google Scholar 

  • Andres, M. S., and Reid, R. P., 2006. Growth morphologies of modern marine stromatolites: a case study from Highborne Cay, Bahamas. Sedimentary Geology, 185, 319–328.

    Article  Google Scholar 

  • Andres, M. S., Sumner, D. Y., Reid, R. P., and Swart, P. K., 2005. Isotopic fingerprints of microbial respiration in aragonite from Bahamas stromatolites. Geology, 34, 973–976.

    Article  Google Scholar 

  • Arp, G., Reimer, A., and Reitner, J., 2001. Photosynthesis-induced biofilm calcification and calcium concentrations in Phanerozoic oceans. Science, 292, 1701–1704.

    Article  Google Scholar 

  • Arp, G., Reimer, A., and Reitner, J., 2003. Microbialite formation in seawater of increased alkalinity, Satonda Crater Lake, Indonesia. Journal of Sedimentary Research, 73, 105–127.

    Article  Google Scholar 

  • Awramik, S. M., 1971. Precambrian columnar stromatolite diversity: reflection of metazoan appearance. Science, 174, 825–827.

    Article  Google Scholar 

  • Awramik, S. M., 1982. Precambrian columnar stromatolite diversity: reflection of metazoan appearance. Science, 216, 171–173.

    Article  Google Scholar 

  • Awramik, S. M., 1992. The history and significance of stromatolites. In Schidlowski, M., Kimberley, M. M., McKirdy, D. M., and Trudinger, P. A. (eds.), Early Organic Evolution: Implications for Energy and Mineral Resources. Berlin: Springer, pp. 435–449.

    Chapter  Google Scholar 

  • Awramik, S. M., and Riding, R., 1988. Role of algal eukaryotes in subtidal columnar stromatolite formation. Proceeding of National Academy of Science, USA, 85, 1327–1329.

    Article  Google Scholar 

  • Babel, M., 2004. Models for evaporite, selenite and gypsum microbialite deposition in ancient saline basins. Acta Geologica Polonica, 54, 219–249.

    Google Scholar 

  • Barbieri, R., and Cavalazzi, B., 2005. Microbial fabrics from Neogene cold seep carbonates Northern Apennine, Italy. Palaeogeography, Palaeoclimatology, Palaeoecology, 227, 143–155.

    Article  Google Scholar 

  • Barbieri, R., Ori, G. G., and Cavalazzi, B., 2004. A Silurian cold-seep ecosystem from the Middle Altlas, Morocco. Palaios, 19, 527–542.

    Article  Google Scholar 

  • Bathurst, R. G. C., 1966. Boring algae, micrite envelopes and lithification of molluscan biosparite. Geological Journal, 5, 15–32.

    Article  Google Scholar 

  • Bauld, J., 1981. Geobiological role of cyanobacterial mats in sedimentary environments: production and preservation of organic matter. BMR Journal of Australian Geology and Geophysics, 6, 307–317.

    Google Scholar 

  • Bauld, J., Chambers, L. A., and Skyring, G. W., 1979. Primary productivity, sulfate reduction and sulfur isotope fractionation in algal mats and sediments of Hamelin pool, Shark Bay, W. A. Australian. Journal of Marine and Freshwater Research, 30, 753–764.

    Article  Google Scholar 

  • Benson, L., 1994. Carbonate deposition, Pyramid Lake Subbasin, Nevada; 1, Sequence of formation and elevational distribution of carbonate deposits (tufas). Palaeogeography Palaeoclimatology and Palaeoecology, 109, 55–87.

    Article  Google Scholar 

  • Benzerara, K., Menguy, N., Lopez-Garcıa, P., Yoon, T.-H., Kazmierczak, J., Tyliszczak, T., Guyot, F., and Brown, G. E. Jr., 2006. Nanoscale detection of organic signatures in carbonate microbialites. PNAS, 103, 9440–9445.

    Article  Google Scholar 

  • Bhaskar, P. V., and Bhosle, N. B., 2005. Microbial extracellular polymeric substances in marine biogeochemical processes. Current Science, 88, 45–53.

    Google Scholar 

  • Bischoff, J. L., Stine, S., Rosenbauer, R. J., Fitzpatrick, J. A., and Stafford, T. W., 1993. Ikaite precipitation by mixing of shoreline springs and lake water, Mono Lake, California, USA. Geochimica Cosmochimica Acta, 57, 3855–3865.

    Article  Google Scholar 

  • Bosak, T., and Newman, D. K., 2005. Microbial kinetic controls on calcite morphology in supersaturated solutions. Journal of Sedimentary Research, 75, 190–199.

    Article  Google Scholar 

  • Braga, J. C., Martin, J. M., and Riding, R., 1995. Controls on microbial dome fabric development along a carbonate-siliciclastic shelf-basin transect, Miocene, SE Spain. Palaios, 10, 347–361.

    Article  Google Scholar 

  • Braissant, O., Cailleau, G., Aragno, M., and Verrecchia, E. P., 2004. Biologically induced mineralization in the tree Milicia excelsa (Moraceae): its causes and consequences to the environment. Geobiology, 2, 59–66.

    Article  Google Scholar 

  • Braissant, O., Decho, A. W., Dupraz, C., Glunk, C., Przekop, K. M., and Visscher, P. T., 2007. Exopolymeric substances of sulfate-reducing bacteria: interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology, 5, 401–411.

    Article  Google Scholar 

  • Buick, R., Dunlop, J. S. R., and Groves, D. I., 1981. Stromatolite recognition in ancient rocks: an appraisal of irregularly laminated structures in an Early Archaean chert-barite unit from North Pole, Western Australia. Alcheringa, 5, 161–181.

    Article  Google Scholar 

  • Burne, R. V., and Moore, L. S., 1987. Microbialites: organosedimentary deposits of benthic microbial communities. Palaios, 2, 241–254.

    Article  Google Scholar 

  • Burns, B. P., Goh, F., Allen, M., and Nellan, B. A., 2004. Microbial diversity of extant stromatolites in the hypersaline marine environment of Shark Bay, Australia. Environmental Microbiology, 6, 1096–1101.

    Article  Google Scholar 

  • Cailleau, G., Braissant, O., and Verrecchia, E. P., 2004. Biomineralization in plants as a long-term carbon sink. Naturwissenschaften, 91, 191–194.

    Article  Google Scholar 

  • Cailleau, G., Braissant, O., Dupraz, C., and Verrecchia, E. P., 2005. Biological control on CaCO3 accumulations in ferrallitic soils of Biga, Ivory Coast. Catena, 59, 1–17.

    Article  Google Scholar 

  • Canaveras, J. C., Cuezva, S., Sanchez-Moral, S., Lario, J., Laiz, L., Gonzales, J. M., and Saiz-Jimenez, C., 2006. Naturwissenschaften, 93, 27–32.

    Article  Google Scholar 

  • Canfield, D. E., and DesMarais, D. J., 1991. Aerobic sulfate reduction in microbial mats. Science, 251, 1471–1473.

    Article  Google Scholar 

  • Decho, A. W., 1990. Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. Oceanography and Marine Biology Annual Review, 28, 73–154.

    Google Scholar 

  • Decho, A. W., 2000. Exopolymer microdomains as a structuring agent for heterogeneity within microbial biofilms. In Riding, R. E., and Awramik, S. M. (eds.), Microbial Sediments. New York: Springer, pp. 1–9.

    Google Scholar 

  • De Philippis, R., Margheri, M. C., Materassi, R., and Vincenzini, M., 1998. Potential of unicellular cyanobacteria from saline environments as exopolysaccharide producers.  Applied and Environmental Microbiology, 64, 1130–1132.

    Google Scholar 

  • De Philippis, R., Sili, C., Paperi, R., and Vincenzini, M., 2001. Exopolysaccharide-producing cyanobacteria and their possible exploitation: a review. Journal of Applied Phycology, 13, 293–299.

    Article  Google Scholar 

  • Dill, R. F., Shinn, E. A., Jones, A. T., Kelly, K., and Steinen, R. P., 1986. Giant subtidal stromatolites forming in normal salinity water. Nature, 324, 55–58.

    Article  Google Scholar 

  • Dravis, J. J., 1983. Hardened subtidal stromatolites, Bahamas. Science, 219, 385–386.

    Article  Google Scholar 

  • Dupraz, C., and Strasser, A., 1999. Microbialites and micro-encrusters in shallow coral bioherms (Middle to Late Oxfordian, Swiss Jura Mountains). Facies, 40, 101–130.

    Article  Google Scholar 

  • Dupraz, C., and Strasser, A., 2002. Nutritional modes in coral-microbialite reefs (Jurassic, Oxfordian, Switzerland). Palaios, 17, 449–471.

    Article  Google Scholar 

  • Dupraz, C., and Visscher, P. T., 2005. Microbial lithification in marine stromatolites and hypersaline mats. Trends in Microbiology, 13, 429–438.

    Article  Google Scholar 

  • Dupraz, C., Visscher, P. T., Baumgartner, L. K., and Reid, R. P., 2004. Microbe-mineral interactions: early CaCO3 precipitation in a Recent hypersaline lake (Eleuthera Islands, Bahamas). Sedimentology, 51, 745–765.

    Article  Google Scholar 

  • Dupraz, C., Patissina, R., and Verrecchia, E. P., 2006. Simulation of stromatolite morphospace using ‘DLA-CA’ growth model’: translation of energy in morphology. Sedimentary Geology, 185, 185–203.

    Article  Google Scholar 

  • Ehrlich, H. L., 1996. Geomicrobiology, 3rd edn. (revised and expanded). New York: Marcel Dekker, Inc.

    Google Scholar 

  • Farmer, J. D., 2000. Hydrothermal systems: doorways to early biosphere evolution. GSA Today, 10, 1–10.

    Google Scholar 

  • Fischer, A. G., 1965. Fossils, early life, and atmospheric history. In Proceeding National Academy of Science. USA, Washington, Vol. 53, pp. 1205–1215.

    Article  Google Scholar 

  • Fouke, B. W., Farmer, J. D., Des Marais, D. J., Pratt, L., Sturchio, N. C., Burns, P. C., and Discipulo, M. K., 2000. Depositional facies and aqueous-solid geochemistry of travertine-depositing hot springs (Ange Terrace, Mammoth Hot Springs, Yellowstone National Park, USA). Journal of Sedimentary Research, 70, 565–585.

    Article  Google Scholar 

  • Freytet, P., and Verrecchia, E. P., 1998. Freshwater organisms that build stromatolites: a synopsis of biocrystallization by prokaryotic and eukaryotic algae. Sedimentology, 45, 535–563.

    Article  Google Scholar 

  • Freytet, P., and Verrecchia, E. P., 1999. Calcitic radial palisadic fabric in freshwater stromatolites: diagenetic and recrystallized feature or physicochemical sinter crust. Sedimentary Geology, 126, 97–102.

    Article  Google Scholar 

  • Gebelein, C. D., 1976. The effects of the physical, chemical and biological evolution of the earth. In Walter, M. R. (ed.), Stromatolites. Developments in Sedimentology. Amsterdam: Elsevier, Vol. 20, pp. 499–515.

    Chapter  Google Scholar 

  • Golubic, S., and Focke, J. W., 1978. Phormidium hendersonii Howe: identify and significance of a modern stromatolites building microorganism. Journal of Sedimentary Petrology, 48, 751–764.

    Google Scholar 

  • Golubic, S., and Hofmann, H. J., 1976. Comparison of Holocene and mid-Precambrian Entophysalidaceae (Cyanophyta) in stromatolitic algal mats; cell division and degradation. Journal of Paleontology, 50, 1074–1082.

    Google Scholar 

  • Grey, K., Moore, L. S., Burne, R. V., Pierson, B. K., and Bauld, J., 1990. Lake Thetis, Western Australia: an example of saline lake sedimentation dominated by benthic microbial processes. Austalian Journal of Marine and Freshwater Research, 41, 275–300.

    Article  Google Scholar 

  • Grotzinger, J. P., and Knoll, A. H., 1999. Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? Annual Review of Earth and Planetary Science, 27, 313–358.

    Article  Google Scholar 

  • Harwood, C. S., and Canale-Parola, E., 1984. Ecology of spirochetes. Annual Review of Microbiology, 38, 161–192.

    Article  Google Scholar 

  • Hillgaertner, H., Dupraz, C., and Hug, W. A., 2001. Microbially induced stabilization of carbonate sands in marine phreatic environments or are micritic meniscus cements good indicators for vadose diagenesis? Sedimentology, 48, 117–131.

    Article  Google Scholar 

  • Jones, D., and Wilson, M. J., 1986. Biomineralization in crustose lichens. In Leadbeater, B. S. C., and Riding, R. (eds.), Biomineralization in Lower Plants and Animals. The Systematics Association, Special Volume 30. New York: Oxford University Press, pp. 91–105.

    Google Scholar 

  • Kalkowsky, E., 1908. Oolith und Stromatolith im nord-deutchen Buntsandstein. Zeitschrift der deutschen geologischen Gesellschaft, 60, 68–125.

    Google Scholar 

  • Kazmierczak, J., and Kempe, S., 2006. Genuine modern analogues of Precambrian stromatolites from caldera lakes of Niuafo’ou Island, Tonga. Naturwissenschaften, 93, 119–126.

    Article  Google Scholar 

  • Kelley, D. S., Karson, J. A., Blackman, D. K., Frueh-Green, G. L., Butterfield, D. A., Lilley, M. D., Olson, E. J., Shrenk, M. O., Roe, K. K., Lebon, G. T., and Rivizzigno, P., and the AT3–60 Shipboard Party, 2001. An off-axis hydrothermal vent field near the Mid-Atlantic ridge at 30° N. Nature, 412, 145–149.

    Article  Google Scholar 

  • Kempe, S., and Kazmierczak, J., 1994. The role of alkalinity in the evolution of ocean chemistry, organization of living systems, and biocalcification processes. Bulletin de l’Institut oceanographique, Monaco, 13, 61–117.

    Google Scholar 

  • Kempe, S., Reimer, A., Lipp, A., Kazmierczak, J., Landmann, G., and Konuk, T., 1991. Largest known microbialites discovered in Lake Van, Turkey. Nature, 349, 605–608.

    Article  Google Scholar 

  • Kennard, J. M., and James, N. P., 1986. Thrombolites and stromatolites: two distinct types of microbial structures. Palaios, 1, 492–503.

    Article  Google Scholar 

  • Klappa, C. F., 1979. Lichen stromatolites; criterion for subaerial exposure and a mechanism for the formation of laminar calcretes (caliche). Journal of Sedimentary Petrology, 49, 387–400.

    Article  Google Scholar 

  • Kobluk, D. R., and Crawford, D. R., 1990. A modern hypersaline organic mud- and gypsum dominated basin and associated microbialites. Palaios, 5, 134–148.

    Article  Google Scholar 

  • Kromkamp, J. C., Perkins, R., Dijkman, N., Consalvey, M., Andres, M., and Reid, R. P., 2007. Resistance to burial of cyanobacteria in stromatolites. Aquatic Microbial Ecology, 48, 123–130.

    Article  Google Scholar 

  • Kumar, S., and Pandey, S. K., 2008. Discovery of organic-walled microbiota from the black-bedded chert, Balman Limestone, the Bhander Group, Lakheri area, Rajasthan. Current Science, 94, 797–800.

    Google Scholar 

  • Lepot, K., Benzerara, K., Brown, G. E. Jr., and Philippot, P., 2008. Microbially influenced formation of 2.724-million-year-old stromatolites. Nature Geoscience, 1, 118–121.

    Article  Google Scholar 

  • Lindsay, J. F., Brasier, M. D., McLoughlin, N., Green, O. R., Fogel, M., McNamara, K., Steele, A., and Mertzman, S. A., 2003. Abiotic Earth – establishing a baseline for earliest life, data from the Archaean of Western Australia. Lunar and Planetary Institute, Annual Meeting. Lunar, Planetary Institute Contribution, 1156, 1137.

    Google Scholar 

  • Logan, B. W., 1961. Cryptozoon and associate stromatolites from the Recent, Shark Bay, Western Australia. The Journal of Geology, 69, 517–533.

    Article  Google Scholar 

  • Logan, B. W., Hoffman, P., and Gebelein, C. D., 1974. Algal mats, cryptalgal fabrics and structures, Hamelin Pool, Western Australia. AAPG Memoir, 22, 140–194.

    Google Scholar 

  • Lowe, D. R., 1994. Abiological origin of described stromatolites older than 3.2 Ga. Geology, 22, 387–390.

    Article  Google Scholar 

  • Lowenstam, H. A., and Weiner, S., 1989. On Biomineralization. New York: Oxford University Press.

    Google Scholar 

  • Ludwig, K. A., Kelley, D. S., Butterfield, D. A., Nelson, B., and Früh-Green, G., 2006. Formation and evolution of carbonate chimneys at the Lost City Hydrothermal Field. Geochemica Cosmochimica Acta, 70, 3625–3645.

    Article  Google Scholar 

  • Macintyre, I. G., Prufert-Bebout, L., and Reid, R. P., 2000. The role of endolithic cyanobacteria in the formation of lithified laminae in Bahamian stromatolites. Sedimentology, 47, 915–921.

    Article  Google Scholar 

  • Mann, S., 2001. Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry. New York: Oxford University Press.

    Google Scholar 

  • Mann, C. J., and Hoffman, L. R., 1984. Algal mounds in Storr’s Lake, San Salvador, Bahamas. In Proceeding of the 2nd Symposium on Geology of the Bahamas, CCFL Bahamian Field Station, pp. 41–51.

    Google Scholar 

  • Mann, C. J., and Nelson, W. M., 1989. Microbialitic structures in Storr’s Lake, San Salvador Island, Bahamas Islands. Palaios, 4, 287–293.

    Article  Google Scholar 

  • McNeese, L. R., 1988. The stromatolites of Storr’s Lake, San Salvador, Bahamas. MSc thesis, University of North Carolina at Chapel Hill, Department of Geology.

    Google Scholar 

  • Merz-Preiss, M., and Riding, R., 1999. Cyanobacterial tufa calcification in two freshwater streams; ambient environment, chemical thresholds biological processes. Sedimentary Geology, 126, 103–124.

    Article  Google Scholar 

  • Neumann, C. A., Bebout, B. M., McNeese, L. R., Paul, C. K., and Paerl, H. W., 1988. Modern stromatolites and associated mats: San Salvador, Bahamas. In Proceedings of the 4th Symposium on the geology of the Bahamas. Bahamas Field Station, San Salvador, pp. 235–251.

    Google Scholar 

  • Noffke, N., Gerdes, G., and Klenke, T., 2003. Benthic cyanobacteria and their influence on the sedimentary dynamics of peritidal depositional systems (siliciclastic, evaporitic salty, and evaporitic carbonatic). Earth-Science Reviews, 62, 163–176.

    Article  Google Scholar 

  • Parker, B. C., Simmons, G. M., Love, F. G. Jr., Wharton, R. A., and Seaburg, K. G. Jr., 1981. Modern stromatolites in Antarctic Dry Valley Lakes. BioScience, 31, 656–661.

    Article  Google Scholar 

  • Pedley, M., 2000. Ambient temperature freshwater microbial tufas. In Riding, R., and Awramik, S. M. (eds.), Microbial Sediments. Berlin: Springer, pp. 179–186.

    Google Scholar 

  • Pentecost, A., 1978. Blue-green algae and freshwater carbonate deposits. Proceedings of the Royal Society of London, 200, 43–61.

    Article  Google Scholar 

  • Pentecost, A., 1995. The quaternary travertine deposits of Europe and Asia Minor. Quaternary Science Reviews, 14, 1005–1028.

    Article  Google Scholar 

  • Pentecost, A., 2005. Travertine. Berlin: Springer.

    Google Scholar 

  • Pentecost, A., and Riding, R., 1986. Calcification in cyanobacteria. In Leadbeater, B. S. C., and Riding, R. (eds.), Biomineralization in Lower Plants and Animals. The Systematic Association, Special Volume 30, pp. 73–90.

    Google Scholar 

  • Perry, R. S., Mcloughlin, N., Lynne, B. Y., Sephton, M. A., Oliver, J. D., Perry, C. C., Campbell, K., Engel, M. H., Farmer, J. D., Brasier, M. D., and Staley, J. T., 2007. Defining biominerals and organominerals: Direct and indirect indicators of life. Sedimentary Geology, 201, 157–179.

    Article  Google Scholar 

  • Playford, P. E., 1979. Stromatolite research in Western Australia. Journal of the Royal Society of Western Australia, 62, 13–20.

    Google Scholar 

  • Playford, P. E., 1990. Geology of the Shark Bay area, Western Australia. In Berry, P. F., Bradshaw, S. D., and Wilson, B. R. (eds.), Research In Shark Bay. West Australian Museum, pp. 13–31.

    Google Scholar 

  • Playford, P. E., and Cockbain, A. E., 1976. Modem algal stromatolites at Hamelin Pool, a hypersaline barred basin in Shark Bay. Western Australia. In Walter, M. R. (ed.), Stromatolites. Developments in Sedimentology. Amsterdam: Elsevier, Vol. 20, pp. 389–411.

    Chapter  Google Scholar 

  • Read, J. F., 1976. Calcretes and their distinction from stromatolites. In Walter, M. R. (ed.), Stromatolites. Developments in Sedimentology. Amsterdam: Elsevier, Vol. 20, pp. 55–71.

    Chapter  Google Scholar 

  • Reid, R. P., and Macintyre, I. G., 2000. Microboring versus recrystallization: further insight into the micritization process. Journal of Sedimentary Research, 70, 24–28.

    Article  Google Scholar 

  • Reid, R. P., Macintyre, I. G., Browne, K. M., Steneck, R. S., and Miller, T., 1995. Modern marine stromatolites in the Exuma Cays, Bahamas: uncommonly common. Facies, 33, 1–18.

    Article  Google Scholar 

  • Reid, R. P., Visscher, P. T., Decho, A. W., Stolz, J. K., Bebout, B. M., Dupraz, C., Mactintyre, I. G., Paerl, H. W., Pinckney, J. L., Prufert-Bebout, L., Steppe, T. F., and Des Marais, D. J., 2000. The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature, 406, 989–992.

    Article  Google Scholar 

  • Reid, R. P., Dupraz, C., Visscher, P. T., Decho, A. W., and Sumner, D. Y., 2003a. Microbial processes forming modern marine stromatolites: microbe-mineral interactions with a three-billion-year rock record. In Krumbein, W. E., Paterson, D. M., and Zavarzin, G. A. (eds.), Fossil and Recent Biofilms - A Natural History of Life on Earth. Dordrecht: Kluwer, pp. 103–118.

    Google Scholar 

  • Reid, R. P., James, N. P., Macintire, I. G., Dupraz, C. P., and Burne, R. V., 2003b. Shark Bay Stromatolites: microfabrics and reinterpretations of origins. Facies, 49, 243–270.

    Google Scholar 

  • Reitner, J., Paul, J., Arp, G., and Hause-Reitner, D., 1996. Lake Thetis Domal Microbialites – a complex framework of calcified biofilms and organomicrites (Cervantes, Western Australia). In Reitner, J., Neuweiler, F., and Gunkel, F. (eds.), Global and Regional Controls on Biogenetic Sedimentation. I. Reef Evolution. Research Reports. Göttingen: Göttinger Arb. Geol. Paläont., Sonderband, Vol. 2, pp. 85–89.

    Google Scholar 

  • Richert, L., Golubic, S., Le Guedes, R., Ratiskol, J., Payri, C., and Guesennec, J., 2005. Characterization of exopolysaccharides produced by cyanobacteria isolated from Polynesian microbial mats. Current Microbiology, 51, 379–384.

    Article  Google Scholar 

  • Riding, R., 1991. Classification of microbial carbonates. In Riding, R. (ed.), Calcareous Algae and Stromatolites. Berlin: Springer, pp. 21–51.

    Chapter  Google Scholar 

  • Riding, R., 1999. The term stromatolite: towards an essential definition. Lethaia, 32, 321–330.

    Article  Google Scholar 

  • Riding, R., 2000. Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology, 47, 179–214.

    Article  Google Scholar 

  • Riding, R., 2006. Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time. Sedimentary Geology, 185, 229–238.

    Article  Google Scholar 

  • Robbins, L. L., and Blackwelder, P. L., 1992. Biochemical and ultrastructural evidence for the origin of whitings; a biologically induced calcium carbonate precipitation mechanism. Geology, 20, 464–468.

    Article  Google Scholar 

  • Schmid, D. U., 1996. Marine microbolithe und mikroinkrustierer aus dem Oberjura. Profil, 9, 101–251.

    Google Scholar 

  • Seong-Joo, L., Browne, K. M., and Golubic, S., 2000. On stromatolites lamination. In Riding, R. E., and Awramik, S. M. (eds.), Microbial Sediments. New York: Springer, pp. 16–24.

    Google Scholar 

  • Shapiro, R. S., 2000. A comment on the systematic confusion of thrombolites. Palaios, 15, 166–169.

    Article  Google Scholar 

  • Sharp, J. H., 1969. Blue-green algae and carbonates – Schizothrix calcicola and algal stromatolites from Bermuda. Limnology and Oceanography, 14, 568–578.

    Article  Google Scholar 

  • Shiraishi, F., Bissett, A., de Beer, D., Reimer, A., and Arp, G., 2008. Photosynthesis, respiration and exopolymer calcium-binding in biofilm calcification (Westerhoefer and Deinschwanger Creek, Germany). Geomicrobiology Journal, 25, 83–94.

    Article  Google Scholar 

  • Simkiss, K., and Wilbur, K., 1989. Biomineralization. Cell Biology and Mineral Deposition. San Diego: Academic.

    Google Scholar 

  • Stal, L. J., 2000. Microbial mats and stromatolites. In Whitton, B. A., and Potts, M. (eds.), The Ecology of Cyanobacteria. Their Diversitty in Time and Space. Dordrecht: Kluwer.

    Google Scholar 

  • Stal, L. J., 2003. Microphytobenthos, their extracellular polymeric substances, and the morphogenesis of intertidal sediments. Geomicrobioly Journal, 20, 463–478.

    Article  Google Scholar 

  • Stolz, J. F., 2000. Structure of microbial mats and biofilms. In Riding, R. E., Awramik, S. M. (eds.), Microbial Sediments. New York: Springer, pp. 1–9.

    Google Scholar 

  • Stumm, W., and Morgan, J. J., 1996. Aquatic Chemistry. New York: Wiley, 1022 pp.

    Google Scholar 

  • Thode-Andersen, S., and Jorgensen, B. B., 1989. Sulfate reduction and the formation of 35S-labeled FeS, FeS2, and S(0) (elemental sulfur) in coastal marine sediments. Limnology and Oceanography, 34, 793–806.

    Article  Google Scholar 

  • Thompson, J. B., and Ferris, F. G., 1990. Cyanobacterial precipitation of gypsum, calcite, and magnesite from natural alkaline lake water. Geology, 18, 995–998.

    Article  Google Scholar 

  • Thrailkill, J., 1976. Speleothems. In Walter, M. R. (ed.), Stromatolites. Developments in Sedimentology. Amsterdam: Elsevier, Vol. 20, pp. 73–86.

    Chapter  Google Scholar 

  • Turner, E. C., and Jones, B., 2005. Microscopic calcite dendrites in cold-water tufa: implications for nucleation of micrite and cement. Sedimentology, 52, 1043–1066.

    Article  Google Scholar 

  • Van Gemerden, H., 1993. Microbial mats: a joint venture. Marine geology, 113, 3–25.

    Article  Google Scholar 

  • Verrecchia, E. P., and Verrecchia, K. E., 1994. Needle-fiber calcite: a critical review and a proposed classification. Journal of Sedimentary Research, 64, 650–664.

    Google Scholar 

  • Verrecchia, E. P., Freytet, P., Verrecchia, K. E., and Dumont, J. L., 1995. Spherulites in calcrete laminar crusts: biogenic CaCO3, precipitation as a major contributor to crust formation. Journal of Sedimentary Research, A65, 690–700.

    Google Scholar 

  • Visscher, P. T., and Stolz, J. F., 2005. Microbial mats as bioreactors: populations, processes and products. Paelogeography Paleoclimatology, Paleooecology, 219, 87–100.

    Article  Google Scholar 

  • Visscher, P. T., Beukema, J., and van Gemerden, H., 1991. In situ characterization of sediments: measurements of oxygen and sulfide profiles. Limnology and Oceanography, 36, 1476–1480.

    Article  Google Scholar 

  • Visscher, P. T., Reid, R. P., and Bebout, B. M., 2000. Microscale observations of sulfate reduction: correlation of microbial activity with lithified micritic laminae in modern marine stromatolites. Geology, 28, 919–922.

    Article  Google Scholar 

  • Vreeland, R. H., Rosenzweig, W. D., and Powers, D. W., 2000. Isolation of a 250 million year old halotolerant bacterium from a primary salt crystal. Nature, 407, 897–900.

    Article  Google Scholar 

  • Vreeland, R. H., Lowenstein, T., Timofeeff, M., Satterfield, C., DiFerdinando, J., Jones, J., Monson, A., Rosenzweig, W. D., Cho, B. C., Park, J. S., Wallace, A., and Grant, W. D., 2007. The isolation of live cretaceous (121–112 million years old) halophilic Archaea from primary salt crystals. Geomicrobiology Journal, 24, 275–282.

    Article  Google Scholar 

  • Walter, M. R., and Heys, G. R., 1985. Links between the rise of Metazoa and the decline of stromatolites. Precambrian Research, 29, 149–174.

    Article  Google Scholar 

  • Warren, J. K., 2006. Evaporites: Sediments, Resources and Hydrocarbons. New York: Springer.

    Book  Google Scholar 

  • Weaver, D. T., and Hicks, R. E., 1995. Biodegradation of Azotobacter vinelendii exopolymer by Lake Superior microbes. Limnology and Oceanography, 40, 1035–1041.

    Article  Google Scholar 

  • Weiner, S., and Addadi, L., 2002. At the cutting edge. Perspectives. Science, 298, 375–376.

    Article  Google Scholar 

  • Weiner, S., and Dove, P. M., 2003. An overview of biomineralization and the problem of the vital effect. In Dove, P. M., Weiner, S., and De Yoreo, J. J. (eds.), Biomineralization. Review in Mineralogy and Geochemistry. Washington: Mineralogical Society of America, Vol. 54, pp. 1–31.

    Google Scholar 

  • Wright, V. P., Platt, N. H., and Wimbledon, W. A., 1988. Biogenic laminar calcrete: evidence of calcified root-mat horizons in paleosols. Sedimentology, 35, 603–620.

    Article  Google Scholar 

  • Yechieli, Y., and Wood, W. W., 2002. Hydrogeologic processes in saline systems: playas, sabkhas, and saline lakes. Earth-Science Reviews, 58, 343–365.

    Article  Google Scholar 

  • Zabielski, V. P., 1991. The depositional history of Storr’s Lake San Salvador, Bahamas. Unpublished PhD thesis, University of North Carolina.

    Google Scholar 

  • Zeebe, R. E., and Wolf-Gladrow, D. (eds.), 2001. CO2 in Seawater: Equilibrium, Kinetics and Isotopes. Amsterdam: Elsevier, 346 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Dupraz, C., Reid, R.P., Visscher, P.T. (2011). Microbialites, Modern. In: Reitner, J., Thiel, V. (eds) Encyclopedia of Geobiology. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9212-1_195

Download citation

Publish with us

Policies and ethics