Encyclopedia of Geobiology

2011 Edition
| Editors: Joachim Reitner, Volker Thiel

Sponges (Porifera) and Sponge Microbes

  • Friederike Hoffmann
  • Marie-Lise Schläppy
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-9212-1_194

Synonyms

Sponge-associated bacteria; Sponge-associated microbes; Sponge-associated microbiota; Sponge bacteria; Sponge–microbe systems; Sponge symbionts

Definition

Sponges are sessile multicellular aquatic animals (Lat. Porifera = bearing pores) whose bodies have a typical body plan which allows water to pass through the animals. Sponges are characterized by a skeleton made of calcareous, siliceous spicules or horny fibers.

Sponge microbes: Bacteria and archaea that live in close and permanent association with sponges, usually in the mesohyl between sponge cells.

Introduction

Sponges are sedentary benthic organisms found  in shallow waters on tropical coral reefs to the Arctic and the deep sea. Some species, however, are restricted to fresh-water ecosystems. Sponges are characterized by a typical body plan built around a system of water canals and chambers (Figure 1a). Within the chambers, flagellated cells called choanocytes produce a water current that enters the sponge body through...
This is a preview of subscription content, log in to check access

Bibliography

  1. Ax, P., 1995. Das System der Metazoa I. Stuttgart: Fischer.Google Scholar
  2. Bayer, K., Schmitt, S., and Hentschel, U., 2007. Microbial nitrification in Mediterranean sponges: possible involvement of ammonium-oxidizing betaproteobacteria. In Custódio, M., Lôbo-Hajdu, G., Hajdu, E., and Muricy, G. (eds.), Porifera Research: Biodiversity, Innovation, Sustainability: Série Livros. Museu Nacional, Rio de Janeiro, pp. 165–171.Google Scholar
  3. Blunt, J. W., Copp, B. R., Munro, H. G. M., Northcote, P. T., and Prinsep, M. R., 2003. Marine natural products. Natural Product Report, 20, 1–48.Google Scholar
  4. Borchiellini, C., Manuel, M., Alivon, E., Boury-Esnault, N., Vacelet, J., and Le Parco, Y., 2001. Sponge paraphyly and the origin of metazoa. Journal of Evolutionary Biology, 14, 171–179.Google Scholar
  5. Boury-Esnault, N., 2006. Systematic and evolution of demospongiae. Canadian Journal of Zoology/Revue Canadienne de Zoologie, 84, 205–224.Google Scholar
  6. Brunton, F. R., and Dixon, O. A., 1994. Siliceous sponge-microbe biotic associations and their recurrence through the phanerozoic as reef mound constructors. Palaios, 9, 370–387.Google Scholar
  7. de Goeij, J. M., Moodley, L., Houtekamer, M., Carballeira, N. M., and van Duyl, F. C., 2008. Tracing 13C-enriched dissolved and particulate organic carbon in the bacteria-containing coral reef sponge Halisarca Caerulea: evidence for Dom-feeding. Limnology & Oceanography, 53, 1376–1386.Google Scholar
  8. Diaz, M. C., and Ward, B. B., 1997. Sponge-mediated nitrification in tropical benthic communities. Marine Ecology Progress Series, 156, 97–107.Google Scholar
  9. Diaz, M. C., Akob, D., and Cary, C. S., 2004. Denaturing gradient gel electrophoresis of nitrifying microbes associated with tropical sponges. Bollettino dei Musei e degli Istituti Biologici dell’Università di Genova, 68, 279–289.Google Scholar
  10. Ereskovsky, A. V., Gonobobleva, E., and Vishnyakov, A., 2005. Morphological evidence for vertical transmission of symbiotic bacteria in the viviparous sponge Halisarca Dujardini Johnston (porifera, demospongiae, halisarcida). Marine Biology, 146, 869–875.Google Scholar
  11. Erpenbeck, D., Breeuwer, A. J., van der Velde, H. C., and Van Soest, R. W. M., 2002. Unravelling host and symbiont phylogenies of halichondrid sponges (Demospongiae, Porifera) using a mitochondrial marker. Marine Biology, 141, 377–386.Google Scholar
  12. Fell, P. E., Knight, P.-A., and Rieders, W., 1989. Low-salinity tolerance of and salinity-induced dormancy in the estuarine sponge Microciona Prolifera (Ellis & Solander) under long-term laboratory culture. Journal of Experimental Marine Biology and Ecology, 133, 195–211.Google Scholar
  13. Fieseler, L., Horn, M., Wagner, M., and Hentschel, U., 2004. Discovery of the novel candidate phylum “Poribacteria” in marine sponges. Applied & Environmental Microbiology, 70, 3724–3732.Google Scholar
  14. Fieseler, L., Quaiser, A., Schleper, C., and Hentschel, U., 2006. Analysis of the first genome fragment from the marine sponge-associated, novel candidate phylum poribacteria by environmental genomics. Environmental Microbiology, 8, 612–624.Google Scholar
  15. Gaidos, E., Dubuc, T., Dunford, M., McAndrew, P., Padilla-Gamino, J., Studer, B., Weersing, K., and Stanley, S., 2007. The precambrian emergence of animal life: a geobiological perspective. Geobiology, 5, 351–373.Google Scholar
  16. Gatti, S., Brey, T., Müller, W. E. G., Heilmayer, O., and Holst, G., 2002. Oxygen microoptodes: a new tool for oxygen measurements in aquatic animal ecology. Marine Biology, 140, 1075–1085.Google Scholar
  17. Gerodette, T., and Flechsig, A. O., 1979. Sediment-induced reduction in the pumping rate of the tropical sponge Verongia Lacunosa. Marine Biology, 55, 103–110.Google Scholar
  18. Grozdanov, L., and Hentschel, U., 2007. An environmental genomics perspective on the diversity and function of marine sponge-associated microbiota. Current Opinion in Microbiology, 10, 215–220.Google Scholar
  19. Hentschel, U., Hopke, J., Horn, M., Friedrich, A. B., Wagner, M., Hacker, J., and Moore, B. S., 2002. Molecular evidence for a uniform microbial community in sponges from different oceans. Applied and Environmental Microbiology, 68, 4431–4440.Google Scholar
  20. Hentschel, U., Fieseler, L., Wehrl, M., Gernert, C., Steinert, M., Hacker, J., and Horn, M., 2003. Microbial diversity of marine sponges. In Müller, W. E. G. (ed.), Marine Molecular Biotechnology. Berlin: Springer, pp. 59–88.Google Scholar
  21. Hentschel, U., Usher, K. M., and Taylor, M. W., 2006. Marine sponges as microbial fermenters. FEMS Microbiology Ecology, 55, 167–177.Google Scholar
  22. Hildebrand, M., Waggoner, L. E., Lim, G. E., Shar, K. H., Ridley, C. P., and Haygood, M. G., 2004. Approaches to identify, clone, and express symbiont bioactive metabolite genes. Natural Product Reports, 21, 122–142.Google Scholar
  23. Hoffmann, F., Larsen, O., Thiel, V., Rapp, H. T., Pape, T., Michaelis, W., and Reitner, J., 2005a. An anaerobic world in sponges. Geomicrobiology Journal, 22, 1–10.Google Scholar
  24. Hoffmann, F., Larsen, O., Rapp, H. T., and Osinga, R., 2005b. Oxygen dynamics in choanosomal sponge explants. Marine Biology Research, 1, 160–163.Google Scholar
  25. Hoffmann, F., Sauter, E., Sachs, O., Røy, H., and Klages, M., 2007. Oxygen distribution in Tentorium Semisuberites and in its habitat in the Arctic deep sea. In Custódio, M., Lôbo-Hajdu, G., Hajdu, E., and Muricy, G. (eds.), Porifera Research: Biodiversity, Innovation, Sustainability: Série Livros. Museu Nacional, Rio de Janeiro, pp. 379–382.Google Scholar
  26. Hoffmann, F., Røy, H., Bayer, K., Hentschel, U., Pfannkuchen, M., Brümmer, F., and de Beer, D., 2008. Oxygen dynamics and transport in the Mediterranean sponge Aplysina Aerophoba. Marine Biology, 153, 1257–1264.Google Scholar
  27. Holmes, B., and Blanch, H., 2007. Genus-specific associations of marine sponges with Group I Crenarchaeota. Marine Biology, 150, 759–772.Google Scholar
  28. Ilan, M., and Abelson, A., 1995. The life of a sponge in a Sandy Lagoon. Biological Bulletin, 189, 363–369.Google Scholar
  29. Lakshminarayan, M. I., Aravind, L., Coon, S. L., Klein, D. C., and Koonin, E. V., 2004. Evolution of cell-cell signaling in animals: Did late horizontal gene transfer from bacteria have a role? Trends in Genetics, 20, 292–299.Google Scholar
  30. Leys, S. P., Mackie, G. O., and Meech, R. W., 1999. Impulse conduction in a sponge. Journal of Experimental Biology, 202, 1139–1150.Google Scholar
  31. McCaffrey, M. A., Moldowan, J. M., Lipton, P. A., Summons, R. E., Peters, K. E., Jeganathan, A., and Watt, D. S., 1994. Paleoenvironmental implications of Novel C30 steranes in precambrian to cenozoic age petroleum and Bitumen. Geochimica et Cosmochimica Acta, 58, 529–532.Google Scholar
  32. Medina, M., Collins, A. G., Silberman, J. D., and Sogin, M. L., 2001. Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA. PNAS, 98, 9707–9712.Google Scholar
  33. Moldowan, J. M., Dahl, J., Jacobsen, S. R., Huizinga, B. J., McCaffrey, M. A., and Summons, R. E., 1994. Molecular fossil evidence for late proterozoic – early paleozoic environments. Terra Nova Abstracts, 14, 4.Google Scholar
  34. Müller, W. E. G., 1998a. Molecular Evolution: Towards the Origin of Metazoa. Berlin: Springer.Google Scholar
  35. Müller, W. E. G., 1998b. Origin of metazoa: sponges as living fossils. Naturwissenschaften, 85, 11–25.Google Scholar
  36. Müller, W. E. G., and Müller, I. M., 2003. Origin of the metazoan immune system: identification of the molecules and their functions in sponges. Integrative & Comparative Biology, 43, 281–292.Google Scholar
  37. Müller, W. E. G., Grebenjuk, V. A., Thakur, N. L., Thakur, A. N., Batel, R., Krasko, A., Müller, I. M., and Breter, H. J., 2004a. Oxygen-controlled bacterial growth in the sponge Suberites Domuncula: toward a molecular understanding of the symbiotic relationships between sponge and bacteria. Applied and Environmental Microbiology, 70, 2332–2341.Google Scholar
  38. Müller, W. E. G., Perovic, S., Schroder, H. C., and Breter, H. J., 2004b. Oxygen as a morphogenic factor in sponges: expression of a tyrosinase gene in the sponge suberites Domuncula. Micron, 35, 87–88.Google Scholar
  39. Paul, V. J., and Puglisi, M. P., 2004. Chemical mediation of interactions among marine organisms. Natural Product Reports, 21, 189–209.Google Scholar
  40. Piel, J., 2004. Metabolites from symbiotic bacteria. Natural Product Reports, 21, 519–538.Google Scholar
  41. Piel, J., 2006. Bacterial symbionts: prospects for the sustainable production of invertebrate-derived pharmaceuticals. Current Medicinal Chemistry, 13, 39–50.Google Scholar
  42. Pile, A. J., Patterson, M. R., and Witman, J. D., 1996. In situ grazing on planktion < 10 μM by the boreal sponge Mycale Lingua. Marine Ecology Progress Series, 141, 95–102.Google Scholar
  43. Pile, A. J., Patterson, M. R., Savarese, M., Chernykh, V. I., and Fialkov, V. A., 1997. Trophic effects of sponge feeding within lake Baikal’s littoral zone. 1. In situ pumping rate. Limnology and Oceanography, 42, 171–178.Google Scholar
  44. Reiswig, H. M., 1971. In situ pumping activities of tropical demospongiae. Marine Biology, 9, 38–50.Google Scholar
  45. Reiswig, H. M., 1974. Water transport, respiration and energetics of three tropical marine sponges. Journal of Experimental Marine Biology and Ecology, 14, 231–249.Google Scholar
  46. Reiswig, H. M., 1981. Partial carbon and energy budgets of the bacteriosponge Verongia Fistularis (Porifera: Demospongiae) in Barbados. Marine Ecology Progress Series, 2, 273–293.Google Scholar
  47. Reitner, J., and Wörheide, G., 2002. Non-lithistid fossil demospongiae – origins of their palaeobiodiversity and highlights in history of preservation. In Hooper, J. N. A., and Soest, R. W. M. v. (eds.), Systema Porifera. New York: Kluwer, pp. 52–68.Google Scholar
  48. Ribes, M., Coma, R., and Gili, J. M., 1999. Natural diet and grazing rate of the temperate sponge Dysidea avara (Demospongiae, Dendroceratida) throughout an annual cycle. Marine Ecology Progress Series, 176, 179–190.Google Scholar
  49. Schläppy, M.-L., Hoffmann, F., Røy, H., Wijffels, R. H., Mendola, D., Sidri, M., and de Beer, D., 2007. Oxygen dynamics and flow patterns of Dysidea avara (Porifera, Demospongiae). Journal of the Marine Biological Association of the United Kingdom, 86, 1677–1682.Google Scholar
  50. Schläppy, M.-L., Schöttner, S. I., Lavik, G., Kuypers, M. M. M., de Beer, D., and Hoffmann, F., 2010a. Evidence of nitrification and denitrification in high and low microbial abundance sponges. Marine Biology, 157, 593–602, doi:10.1007/s00227-009-1344-5.Google Scholar
  51. Schläppy, M.-L., Weber, M., Mendola, D., Hoffmann, F., and de Beer, D., 2010b. Heterogeneous oxygenation resulting from active and passive flow in two Mediterranean sponges, Dysidea avara and Chondrosia reniformis. Limnology and Oceanography, 55(3), 1289–1300. doi:10.4319/lo.2010.55.3.1289.Google Scholar
  52. Schmitt, S., Weisz, J., Lindquist, N., and Hentschel, U., 2007. Vertical transmission of a phylogenetically complex microbial consortium in the viviparous sponge Ircinia felix. Applied and Environmental Microbiology, 73, 2067–2078.Google Scholar
  53. Schönberg, C. H. L., Hoffmann, F., and Gatti, S., 2004. Using microsensors to measure sponge physiology. Bollettino dei Musei e degli Istituti Biologici dell’ Universitá die Genova, 68, 593–604.Google Scholar
  54. Sharp, K., Eam, B., Faulkner, D., and Haygood, M., 2007. Vertical transmission of diverse microbes in the tropical sponge Corticium Sp. Applied and Environmental Microbiology, 73, 622–629.Google Scholar
  55. Taylor, M. W., Radax, R., Steger, D., and Wagner, M., 2007. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiology and Molecular Biology Reviews, 71, 259–347.Google Scholar
  56. Thacker, R. W., and Starnes, S., 2003. Host specificity of the symbiotic cyanobacterium Oscillatoria Spongelia in marine sponges, Dysidea spp. Marine Biology, 142, 643–648.Google Scholar
  57. Thiel, V., Jenisch, A., Wörheide, G., Löwenberg, A., Reitner, J., and Michaelis, W., 1999. Mid-chain branched alkanoic acids from “living fossil” demosponges: a link to ancient sedimentary lipids? Organic Geochemistry, 30, 1–14.Google Scholar
  58. Thiel, V., Blumenberg, M., Hefter, J., Pape, T., Pomponi, S., Reed, J., Reitner, J., Wörheide, G., and Michaelis, W., 2002. A chemical view of the most ancient metazoa – biomarker chemotaxonomy of Hexactinellid sponges. Naturwissenschaften, 89, 60–66.Google Scholar
  59. Vacelet, J., 1970. Description De Cellules à Bactéries Intranucléaires Chez Des Eponges Verongia. Journal de Microscopie, 9, 333–346.Google Scholar
  60. Vacelet, J., and Donadey, C., 1977. Electron microscope study of the association between some sponges and bacteria. Journal of Experimental Marine Biology and Ecology, 30, 301–314.Google Scholar
  61. Vacelet, J., Fiala-Médioni, A., Fisher, C. R., and Boury-Esnault, N., 1996. Symbiosis between methane-oxidizing bacteria and a deep-sea carnivorous Cladorhizid sponge. Marine Ecology Progress Series, 145, 77–85.Google Scholar
  62. Vogel, S., 1977. Current-induced flow through living sponges in nature. Proceedings of the National Academy of Science USA, 74, 2069–2071.Google Scholar
  63. Webster, N. S., Wilson, K. J., Blackall, L. L., and Hill, R. T., 2001. Phylogenetic diversity of bacteria associated with the marine sponge Rhopaloeides odorabile. Applied and Environmental Microbiology, 67, 434–444.Google Scholar
  64. Wilkinson, C. R., 1978. Microbial association in sponges. II. Numerical analysis of sponge and water bacterial populations. Marine Biology, 49, 169–176.Google Scholar
  65. Wilkinson, C. R., 1983. Net primary productivity in coral reef sponges. Science, 219, 410–412.Google Scholar
  66. Wilkinson, C. R., and Garrone, R., 1980. Nutrition of marine sponges. Involvement of symbiotic bacteria in the uptake of dissolved carbon. In Smith, D. C., and Tiffon, Y. (eds.), Nutrition in Lower Metazoa. Oxford: Pergamon Press, pp. 157–161.Google Scholar
  67. Willenz, P., 1980. Kinetic and morphological aspects of particle ingestion by the freshwater sponge Ephydatia Fluviatilis L. In Smith, D. C., and Tiffon, Y. (eds.), Nutrition in Lower Metazoa. Oxford: Pergamon Press, pp. 163–178.Google Scholar
  68. Witte, U., Brattegard, T., Graf, G., and Springer, B., 1997. Particle capture and deposition by deep-sea sponges from the Norwegian-Greenland Sea. Marine Ecology Progress Series, 154, 241–252.Google Scholar
  69. Yahel, G., Sharp, J. H., Marie, D., Hase, C., and Genin, A., 2003. In situ feeding and element removal in the symbiont-bearing sponge Theonella swinhoei: bulk DOC is the major source for carbon. Limnology & Oceanography, 48, 141–149.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Friederike Hoffmann
    • 1
  • Marie-Lise Schläppy
    • 2
  1. 1.Sars International Centre for Marine Molecular BiologyBergenNorway
  2. 2.Max Planck Institute for Marine MicrobiologyBremenGermany